Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment

Abstract

We carried out metagenomic shotgun sequencing and a metagenome-wide association study (MGWAS) of fecal, dental and salivary samples from a cohort of individuals with rheumatoid arthritis (RA) and healthy controls. Concordance was observed between the gut and oral microbiomes, suggesting overlap in the abundance and function of species at different body sites. Dysbiosis was detected in the gut and oral microbiomes of RA patients, but it was partially resolved after RA treatment. Alterations in the gut, dental or saliva microbiome distinguished individuals with RA from healthy controls, were correlated with clinical measures and could be used to stratify individuals on the basis of their response to therapy. In particular, Haemophilus spp. were depleted in individuals with RA at all three sites and negatively correlated with levels of serum autoantibodies, whereas Lactobacillus salivarius was over-represented in individuals with RA at all three sites and was present in increased amounts in cases of very active RA. Functionally, the redox environment, transport and metabolism of iron, sulfur, zinc and arginine were altered in the microbiota of individuals with RA. Molecular mimicry of human antigens related to RA was also detectable. Our results establish specific alterations in the gut and oral microbiomes in individuals with RA and suggest potential ways of using microbiome composition for prognosis and diagnosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microbial dysbiosis in the gut, dental plaques and saliva of individuals with RA.
Figure 2: Oral MLGs enriched in dental and salivary samples of RA subjects and controls.
Figure 3: Patient stratification on the basis of RA-associated bacteria.
Figure 4: Correlation between gut and oral MLGs.
Figure 5: Gut and oral MLGs can be used to distinguish RA patients from healthy controls.
Figure 6: The microbiome is altered after DMARD treatment.

Similar content being viewed by others

References

  1. McInnes, I.B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. McInnes, I.B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deane, K.D. & El-Gabalawy, H. Pathogenesis and prevention of rheumatic disease: focus on preclinical RA and SLE. Nat. Rev. Rheumatol. 10, 212–228 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Demoruelle, M.K., Deane, K.D. & Holers, V.M. When and where does inflammation begin in rheumatoid arthritis? Curr. Opin. Rheumatol. 26, 64–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clemente, J.C., Ursell, L.K., Parfrey, L.W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamada, N., Seo, S.-U., Chen, G.Y. & Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Faith, J.J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. The Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

  15. Wade, W.G. The oral microbiome in health and disease. Pharmacol. Res. 69, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, X., Zou, Q., Zeng, B., Fang, Y. & Wei, H. Analysis of fecal Lactobacillus community structure in patients with early rheumatoid arthritis. Curr. Microbiol. 67, 170–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Vaahtovuo, J., Munukka, E., Korkeamäki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008).

    CAS  PubMed  Google Scholar 

  18. Scher, J.U. et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 64, 3083–3094 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scher, J.U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2, e01202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen, H.B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Hsiao, A. et al. Recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome in the first year of life. Cell Host Microbe 17, 690–703 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Franzosa, E.A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA 112, E2930–E2938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verschoor, A. et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat. Immunol. 12, 1194–1201 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Yeaman, M.R. Platelets: at the nexus of antimicrobial defence. Nat. Rev. Microbiol. 12, 426–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Konig, M.F., Paracha, A.S., Moni, M., Bingham, C.O. & Andrade, F. Defining the role of Porphyromonas gingivalis peptidylarginine deiminase (PPAD) in rheumatoid arthritis through the study of PPAD biology. Ann. Rheum. Dis. (2014).

  29. Michels, F. et al. Late prosthetic joint infection due to Rothia mucilaginosa. Acta Orthop. Belg. 73, 263–267 (2007).

    PubMed  Google Scholar 

  30. Verrall, A.J., Robinson, P.C., Tan, C.E., Mackie, W.G. & Blackmore, T.K. Rothia aeria as a cause of sepsis in a native joint. J. Clin. Microbiol. 48, 2648–2650 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Colombo, A.P. et al. Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray. J. Periodontol. 83, 1279–1287 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hilty, M. et al. Disordered microbial communities in asthmatic airways. PLoS One 5, e8578 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, H., Shin, J.W., Park, S. & Kim, W. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS One 9, e109710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rashid, T. & Ebringer, A. Autoimmunity in rheumatic diseases is induced by microbial infections via crossreactivity or molecular mimicry. Autoimmune Dis. 2012, 539282 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. van Heemst, J. et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat. Commun. 6, 6681 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. van der Helm-van Mil, A.H. Risk estimation in rheumatoid arthritis: from bench to bedside. Nat. Rev. Rheumatol. 10, 171–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L., Xiong, Z., Sun, L., Yang, J. & Jin, Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res. 40, D641–D645 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Goldbach-Mansky, R. et al. Comparison of Tripterygium wilfordii Hook F versus sulfasalazine in the treatment of rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 151, 229–240 W49–W51 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tao, X., Younger, J., Fan, F.Z., Wang, B. & Lipsky, P.E. Benefit of an extract of Tripterygium wilfordii Hook F in patients with rheumatoid arthritis: a double-blind, placebo-controlled study. Arthritis Rheum. 46, 1735–1743 (2002).

    Article  PubMed  Google Scholar 

  40. Lv, Q.-W. et al. Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of active rheumatoid arthritis (TRIFRA): a randomised, controlled clinical trial. Ann. Rheum. Dis. 74, 1078–1086 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun. 6, 6528 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. McArdle, B.H. & Anderson, M.J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).

    Article  Google Scholar 

  46. Zapala, M.A. & Schork, N.J. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl. Acad. Sci. USA 103, 19430–19435 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karlsson, F.H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Patil, K.R. & Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. USA 102, 2685–2689 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (grants 30890032 and 30725008 to Jun Wang and 81325019 to X.Z.), the Shenzhen Municipal Government of China (grant BGI20100001 to Jun Wang and grants JSGG20140702161403250 and DRC-SZ[2015]162 to Q.F.), the Danish Strategic Research Council (grant 2106-07-0021 to J.W.), an Ole Rømer grant from the Danish Natural Science Research Council and the Solexa project (272-07-0196 to J.W.), the Fund for Science and Technology Development (FDCT) from Macao (grant 077/2014/A2 to J.W.) and the Research Special Fund for Public Welfare Industry of Health (grant 2013202017 to X.Z.). The authors are very grateful to colleagues at BGI-Shenzhen for DNA extraction, library construction, sequencing and discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.Z., Yingrui Li and Jun Wang conceived and directed the project. X.Z., D.L., X. Wu, H.C., L.W., Q.-j.W., F.Z., W.Z. and Yongzhe Li made clinical diagnoses and performed treatment and sample collection. Z.L. and M.Z. managed the samples at BGI. D.Z., H.J., Q.F., D.W., Z.J., L.T., Yin Li, B.C., Z.L., Yanli Li, H.X., Junhua Li, Weineng Chen, S.T., Xiaoqiang Xu, X. Wang, X.C., S.L., Y.X., Jiyang Li and H.Z. performed bioinformatic analyses. X.Z., H.J. and L.L. wrote the manuscript. X.Q., G.L., W.X., L.X., Jun Li, Wanting Chen, Xun Xu, Y.Y., H.Y., Jian Wang, J.Y.A., K.K., T.L. and Q.H. contributed to data collection and text revision.

Corresponding authors

Correspondence to Xuan Zhang, Yingrui Li or Jun Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note & Supplementary Figures 1–15 (PDF 9168 kb)

Dataset 1

Supplementary Tables 1–25 (XLSX 874 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, D., Jia, H. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 21, 895–905 (2015). https://doi.org/10.1038/nm.3914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing