Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Influence of nutrient-derived metabolites on lymphocyte immunity

Abstract

Organisms need to protect themselves against potential dangers from their surroundings, yet they require constant and intimate interactions with the same environment for their survival. The immune system is instrumental for protection against invading organisms and their toxins. The immune system consists of many cell types and is highly integrated within other tissues. Immune activity is particularly enriched at surfaces that separate the host from its environment, such as the skin and the gastrointestinal tract. This enables protection at sites directly at risk but also enables environmental factors to influence the maturation and function of immune structures and cells. Recent work has indicated that the diet in particular is able to influence the immune system and thus affect the development of inflammatory disease. This review aims to highlight recent work on how external factors, with a focus on those derived from the diet such as vitamin A, can have a direct or indirect deterministic influence on the activity and function of immunity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Developmental time frame of lymphoid tissue organogenesis.
Figure 2: Pathways involved in nutrient signaling in some lymphocytes.

References

  1. 1

    Hooper, L.V. & Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Randall, T.D., Carragher, D.M. & Rangel-Moreno, J. Development of secondary lymphoid organs. Annu. Rev. Immunol. 26, 627–650 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Amarasekera, M., Prescott, S.L. & Palmer, D.J. Nutrition in early life, immune-programming and allergies: the role of epigenetics. Asian Pac. J. Allergy Immunol. 31, 175–182 (2013).

    PubMed  Google Scholar 

  4. 4

    Palmer, A.C. Nutritionally mediated programming of the developing immune system. Adv Nutr 2, 377–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Rytter, M.J., Kolte, L., Briend, A., Friis, H. & Christensen, V.B. The immune system in children with malnutrition–a systematic review. PLoS ONE 9, e105017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Kadow, S. et al. Aryl hydrocarbon receptor is critical for homeostasis of invariant γδ T cells in the murine epidermis. J. Immunol. 187, 3104–3110 (2011).

    Article  CAS  Google Scholar 

  7. 7

    Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Hayday, A.C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Komano, H. et al. Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. Proc. Natl. Acad. Sci. USA 92, 6147–6151 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Shires, J., Theodoridis, E. & Hayday, A.C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Stange, J. & Veldhoen, M. The aryl hydrocarbon receptor in innate T cell immunity. Semin. Immunopathol. 35, 645–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Turchinovich, G. & Hayday, A.C. Skint-1 identifies a common molecular mechanism for the development of interferon-γ -secreting versus interleukin-17-secreting γδ T cells. Immunity 35, 59–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Hayday, A.C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl. Acad. Sci. USA 111, 5307–5312 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Conti, H.R. et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J. Exp. Med. 211, 2075–2084 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Conti, H.R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kotake, S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345–1352 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Kurasawa, K. et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum. 43, 2455–2463 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Ziolkowska, M. et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J. Immunol. 164, 2832–2838 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Ivanov, I.I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Ivanov, I.I. & Honda, K. Intestinal commensal microbes as immune modulators. Cell Host Microbe 12, 496–508 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Goodnow, C.C., Vinuesa, C.G., Randall, K.L., Mackay, F. & Brink, R. Control systems and decision making for antibody production. Nat. Immunol. 11, 681–688 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Karrer, U. et al. On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11−/−) mutant mice. J. Exp. Med. 185, 2157–2170 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Eberl, G. From induced to programmed lymphoid tissues: the long road to preempt pathogens. Trends Immunol. 28, 423–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Eberl, G. & Sawa, S. Opening the crypt: current facts and hypotheses on the function of cryptopatches. Trends Immunol. 31, 50–55 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    van de Pavert, S.A. & Mebius, R.E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Kiss, E.A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Pabst, O. et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J. Immunol. 177, 6824–6832 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    McDade, T.W., Beck, M.A., Kuzawa, C. & Adair, L.S. Prenatal undernutrition, postnatal environments, and antibody response to vaccination in adolescence. Am. J. Clin. Nutr. 74, 543–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Moore, S.E. et al. Birth weight predicts response to vaccination in adults born in an urban slum in Lahore, Pakistan. Am. J. Clin. Nutr. 80, 453–459 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Moore, S.E. et al. Revaccination does not improve an observed deficit in antibody responses in Pakistani adults born of a lower birth weight. Vaccine 26, 158–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Victora, C.G. et al. Influence of birth weight on mortality from infectious diseases: a case-control study. Pediatrics 81, 807–811 (1988).

    CAS  PubMed  Google Scholar 

  41. 41

    Ahmed, F., Jones, D.B. & Jackson, A.A. Effect of undernutrition on the immune response to rotavirus infection in mice. Ann. Nutr. Metab. 34, 21–31 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Chandra, R.K. Antibody formation in first and second generation offspring of nutritionally deprived rats. Science 190, 289–290 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Chandra, R.K. & Wadhwa, M. Nutritional modulation of intestinal mucosal immunity. Immunol. Invest. 18, 119–126 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Klein, L., Kyewski, B., Allen, P.M. & Hogquist, K.A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat. Rev. Immunol. 14, 377–391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    PrabhuDas, M. et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat. Immunol. 12, 189–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    van de Pavert, S.A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Liu, X. et al. Vitamin A supplementation in early life enhances the intestinal immune response of rats with gestational vitamin A deficiency by increasing the number of immune cells. PLoS ONE 9, e114934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Veldhoen, M. & Veiga-Fernandes, H. Feeding immunity: skepticism, delicacies and delights. Nat. Immunol. 16, 215–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Ashworth, A. Effects of intrauterine growth retardation on mortality and morbidity in infants and young children. Eur. J. Clin. Nutr. 52, S34–S41 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Vlasova, A.N., Chattha, K.S., Kandasamy, S., Siegismund, C.S. & Saif, L.J. Prenatally acquired vitamin A deficiency alters innate immune responses to human rotavirus in a gnotobiotic pig model. J. Immunol. 190, 4742–4753 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Sirisinha, S., Suskind, R., Edelman, R., Asvapaka, C. & Olson, R.E. Secretory and serum IgA in children with protein-calorie malnutrition. Pediatrics 55, 166–170 (1975).

    CAS  PubMed  Google Scholar 

  52. 52

    Moore, S.E. et al. Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa. Int. J. Epidemiol. 28, 1088–1095 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Moore, S.E. et al. Season of birth predicts mortality in rural Gambia. Nature 388, 434 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Moore, S.E., Collinson, A.C., Tamba N'Gom, P., Aspinall, R. & Prentice, A.M. Early immunological development and mortality from infectious disease in later life. Proc. Nutr. Soc. 65, 311–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Fawzi, W.W., Chalmers, T.C., Herrera, M.G. & Mosteller, F. Vitamin A supplementation and child mortality. A meta-analysis. J. Am. Med. Assoc. 269, 898–903 (1993).

    Article  CAS  Google Scholar 

  56. 56

    Glasziou, P.P. & Mackerras, D.E. Vitamin A supplementation in infectious diseases: a meta-analysis. Br. Med. J. 306, 366–370 (1993).

    Article  CAS  Google Scholar 

  57. 57

    WHO. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global Database on Vitamin A Deficiency (World Health Organization, Geneva, 2009).

  58. 58

    WHO. Randomised trial to assess benefits and safety of vitamin A supplementation linked to immunisation in early infancy. Lancet 352, 1257–1263 (1998).

  59. 59

    Darboe, M.K. et al. Effectiveness of an early supplementation scheme of high-dose vitamin A versus standard WHO protocol in Gambian mothers and infants: a randomised controlled trial. Lancet 369, 2088–2096 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    McIntosh, B.E., Hogenesch, J.B. & Bradfield, C.A. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 72, 625–645 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Fernandez-Salguero, P. et al. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268, 722–726 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Bjeldanes, L.F., Kim, J.Y., Grose, K.R., Bartholomew, J.C. & Bradfield, C.A. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc. Natl. Acad. Sci. USA 88, 9543–9547 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Rannug, A. et al. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. J. Biol. Chem. 262, 15422–15427 (1987).

    CAS  PubMed  Google Scholar 

  64. 64

    Moura-Alves, P. et al. AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512, 387–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Ciolino, H.P., Daschner, P.J. & Yeh, G.C. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem. J. 340, 715–722 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Ross, J.A. & Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22, 19–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Ciolino, H.P., Daschner, P.J., Wang, T.T. & Yeh, G.C. Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem. Pharmacol. 56, 197–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Mohammadi-Bardbori, A., Bengtsson, J., Rannug, U., Rannug, A. & Wincent, E. Quercetin, resveratrol, and curcumin are indirect activators of the aryl hydrocarbon receptor (AHR). Chem. Res. Toxicol. 25, 1878–1884 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Gu, Y.Z., Hogenesch, J.B. & Bradfield, C.A. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40, 519–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Schmidt, J.V., Su, G.H., Reddy, J.K., Simon, M.C. & Bradfield, C.A. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA 93, 6731–6736 (1996).

    Article  CAS  Google Scholar 

  71. 71

    Shimizu, Y. et al. Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 97, 779–782 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Lee, J.S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2012).

    Article  CAS  Google Scholar 

  73. 73

    Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Quintana, F.J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    Article  CAS  Google Scholar 

  76. 76

    Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Wolk, K., Witte, E., Witte, K., Warszawska, K. & Sabat, R. Biology of interleukin-22. Semin. Immunopathol. 32, 17–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Martin, B., Hirota, K., Cua, D.J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Nakajima, K. et al. The ARNT-STAT3 axis regulates the differentiation of intestinal intraepithelial TCRαβ+CD8αα+ cells. Nat. Commun. 4, 2112 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Chmill, S., Kadow, S., Winter, M., Weighardt, H. & Esser, C. 2,3,7,8-Tetrachlorodibenzo-p-dioxin impairs stable establishment of oral tolerance in mice. Toxicol. Sci. 118, 98–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Esser, C., Rannug, A. & Stockinger, B. The aryl hydrocarbon receptor in immunity. Trends Immunol. 30, 447–454 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Fritsche, E. et al. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc. Natl. Acad. Sci. USA 104, 8851–8856 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Rannug, U. et al. Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem. Biol. 2, 841–845 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Chennupati, V. et al. Intra- and intercompartmental movement of γδ T cells: intestinal intraepithelial and peripheral γδ T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J. Immunol. 185, 5160–5168 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Kawaguchi, M. et al. Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T cells expressing γδ T-cell antigen receptors. Proc. Natl. Acad. Sci. USA 90, 8591–8594 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Fuss, I.J. et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol. 157, 1261–1270 (1996).

    CAS  PubMed  Google Scholar 

  88. 88

    Wehkamp, J. et al. Reduced Paneth cell α-defensins in ileal Crohn's disease. Proc. Natl. Acad. Sci. USA 102, 18129–18134 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Loftus, E.V. Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 126, 1504–1517 (2004).

    Article  PubMed  Google Scholar 

  90. 90

    Amre, D.K. et al. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn's disease in children. Am. J. Gastroenterol. 102, 2016–2025 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    D'Souza, S. et al. Dietary patterns and risk for Crohn's disease in children. Inflamm. Bowel Dis. 14, 367–373 (2008).

    Article  PubMed  Google Scholar 

  92. 92

    Sousa Guerreiro, C. et al. A comprehensive approach to evaluate nutritional status in Crohn's patients in the era of biologic therapy: a case-control study. Am. J. Gastroenterol. 102, 2551–2556 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Monteleone, I. et al. Aryl hydrocarbon receptor-induced signals upregulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141, 237–248 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L. & Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    van den Bogaard, E.H. et al. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. J. Clin. Invest. 123, 917–927 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Lin, T. et al. CD3CD8+ intestinal intraepithelial lymphocytes (IEL) and the extrathymic development of IEL. Eur. J. Immunol. 24, 1080–1087 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Rocha, B. The extrathymic T-cell differentiation in the murine gut. Immunol. Rev. 215, 166–177 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Mora, J.R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Veldhoen, M. & Brucklacher-Waldert, V. Dietary influences on intestinal immunity. Nat. Rev. Immunol. 12, 696–708 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Hall, J.A. et al. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34, 435–447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Takahashi, H. et al. TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat. Immunol. 13, 587–595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Benson, M.J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R.J. All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Elias, K.M. et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111, 1013–1020 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Hill, J.A. et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29, 758–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Mucida, D. et al. Retinoic acid can directly promote TGF-β-mediated Foxp3+ Treg cell conversion of naive T cells. Immunity 30, 471–472, author reply 472–473 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Brown, C.C. et al. Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program. Immunity 42, 499–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Pino-Lagos, K. et al. A retinoic acid-dependent checkpoint in the development of CD4+ T cell-mediated immunity. J. Exp. Med. 208, 1767–1775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    DePaolo, R.W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Bruce, D. & Cantorna, M.T. Intrinsic requirement for the vitamin D receptor in the development of CD8αα-expressing T cells. J. Immunol. 186, 2819–2825 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Yu, S., Bruce, D., Froicu, M., Weaver, V. & Cantorna, M.T. Failure of T cell homing, reduced CD4/CD8αα intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. Proc. Natl. Acad. Sci. USA 105, 20834–20839 (2008).

    Article  PubMed  Google Scholar 

  115. 115

    Froicu, M. et al. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol. Endocrinol. 17, 2386–2392 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Halme, L. et al. Family and twin studies in inflammatory bowel disease. World J. Gastroenterol. 12, 3668–3672 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    Bendik, I., Friedel, A., Roos, F.F., Weber, P. & Eggersdorfer, M. Vitamin D: a critical and essential micronutrient for human health. Front. Physiol. 5, 248 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Cantorna, M.T. & Mahon, B.D. Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp. Biol. Med. 229, 1136–1142 (2004).

    Article  CAS  Google Scholar 

  119. 119

    Dresner-Pollak, R. et al. The BsmI vitamin D receptor gene polymorphism is associated with ulcerative colitis in Jewish Ashkenazi patients. Genet. Test. 8, 417–420 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Simmons, J.D., Mullighan, C., Welsh, K.I. & Jewell, D.P. Vitamin D receptor gene polymorphism: association with Crohn's disease susceptibility. Gut 47, 211–214 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Liu, W. et al. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J. Clin. Invest. 123, 3983–3996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Mazmanian, S.K., Liu, C.H., Tzianabos, A.O. & Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Torchinsky, M.B., Garaude, J., Martin, A.P. & Blander, J.M. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458, 78–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  127. 127

    Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  128. 128

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Narushima, S. et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 5, 333–339 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. 130

    Obata, Y. et al. The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat. Immunol. 15, 571–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. 131

    Gluckman, P.D., Hanson, M.A., Cooper, C. & Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Sommer, F. & Backhed, F. The gut microbiota–masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Turnbaugh, P.J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl. Acad. Sci. USA 107, 7503–7508 (2010).

    Article  PubMed  Google Scholar 

  134. 134

    Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Maynard, C.L., Elson, C.O., Hatton, R.D. & Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    de Francisco, A. et al. Acute toxicity of vitamin A given with vaccines in infancy. Lancet 342, 526–527 (1993).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Mora, J.R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. 139

    Mora, J.R., Iwata, M. & von Andrian, U.H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat. Rev. Immunol. 8, 685–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Basu, R. et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 37, 1061–1075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Ramirez, J.M. et al. Activation of the aryl hydrocarbon receptor reveals distinct requirements for IL-22 and IL-17 production by human T helper cells. Eur. J. Immunol. 40, 2450–2459 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Gagliani, N. et al. TH17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature doi:10.1038/nature14452 (29 April 2015).

  143. 143

    Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Stockinger, B., Veldhoen, M. & Hirota, K. Modulation of Th17 development and function by activation of the aryl hydrocarbon receptor—the role of endogenous ligands. Eur. J. Immunol. 39, 652–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. 145

    Hahn, M.E., Karchner, S.I., Shapiro, M.A. & Perera, S.A. Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proc. Natl. Acad. Sci. USA 94, 13743–13748 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. 146

    Hahn, M.E. Aryl hydrocarbon receptors: diversity and evolution. Chem. Biol. Interact. 141, 131–160 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Hahn, M.E. et al. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. J. Exp. Zoolog. A Comp. Exp. Biol. 305, 693–706 (2006).

    Article  Google Scholar 

  148. 148

    Qiu, J. et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39, 386–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. 149

    Holick, M.F., MacLaughlin, J.A. & Doppelt, S.H. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science 211, 590–593 (1981).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Bjelakovic, G. et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst. Rev. 1, CD007470 (2014).

    Google Scholar 

  151. 151

    Bolland, M.J., Grey, A., Gamble, G.D. & Reid, I.R. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol. 2, 307–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. 152

    Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nat. Immunol. 8, 285–293 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support by the European Research Council fund (ERC) (280307), the European Molecular Biology Organisation (EMBO), and an UK Biotechnology and Biological Sciences Research Council (BBSRC) Institute Strategic Programme (ISP) grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marc Veldhoen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veldhoen, M., Ferreira, C. Influence of nutrient-derived metabolites on lymphocyte immunity. Nat Med 21, 709–718 (2015). https://doi.org/10.1038/nm.3894

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing