Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis

A Corrigendum to this article was published on 04 February 2016

This article has been updated

Abstract

Previous studies investigating the role of smooth muscle cells (SMCs) and macrophages in the pathogenesis of atherosclerosis have provided controversial results owing to the use of unreliable methods for clearly identifying each of these cell types. Here, using Myh11-CreERT2 ROSA floxed STOP eYFP Apoe−/− mice to perform SMC lineage tracing, we find that traditional methods for detecting SMCs based on immunostaining for SMC markers fail to detect >80% of SMC-derived cells within advanced atherosclerotic lesions. These unidentified SMC-derived cells exhibit phenotypes of other cell lineages, including macrophages and mesenchymal stem cells (MSCs). SMC-specific conditional knockout of Krüppel-like factor 4 (Klf4) resulted in reduced numbers of SMC-derived MSC- and macrophage-like cells, a marked reduction in lesion size, and increases in multiple indices of plaque stability, including an increase in fibrous cap thickness as compared to wild-type controls. On the basis of in vivo KLF4 chromatin immunoprecipitation–sequencing (ChIP-seq) analyses and studies of cholesterol-treated cultured SMCs, we identified >800 KLF4 target genes, including many that regulate pro-inflammatory responses of SMCs. Our findings indicate that the contribution of SMCs to atherosclerotic plaques has been greatly underestimated, and that KLF4-dependent transitions in SMC phenotype are critical in lesion pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lineage tracing provides evidence for large populations of phenotypically modulated SMCs within lesions.
Figure 2: Ultrastructural and functional characteristics of phenotypically modulated SMCs.
Figure 3: SMCs within human coronary artery lesions express the macrophage marker CD68.
Figure 4: SMC-specific Klf4 deficiency results in decreased lesion size and increased indices of plaque stability.
Figure 5: KLF4 binds to >800 genes within SMCs in advanced atherosclerotic lesions.
Figure 6: KLF4-dependent effects in cholesterol-loaded, cultured SMCs.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 12 August 2015

    In the version of this article initially published, the labels to the left of the two micrographs in Figure 2c are reversed. Also, in Figure 4g, MKi67, used as a cell proliferation marker, is misspelled. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Saffitz, J.E. & Schwartz, C.J. Coronary atherosclerosis and thrombosis underlying acute myocardial infarction. Cardiol. Clin. 5, 21–30 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Libby, P. & Aikawa, M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat. Med. 8, 1257–1262 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Falk, E., Nakano, M., Benton, J.F., Finn, A.V. & Virmani, R. Update on acute coronary syndromes: the pathologists′ view. Eur. Heart J. 34, 719–728 (20123).

    Article  PubMed  CAS  Google Scholar 

  4. Falk, E., Shah, P.K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Virmani, R., Kolodgie, F.D., Burke, A.P., Farb, A. & Schwartz, S.M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, R.T. & Libby, P. The unstable atheroma. Arterioscler. Thromb. Vasc. Biol. 17, 1859–1867 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Ross, R. Atherosclerosis–an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2045–2051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Glass, C.K. & Witztum, J.L. Atherosclerosis: the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Libby, P., Ridker, P.M. & Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Gomez, D. & Owens, G.K. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res. 95, 156–164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rong, J.X., Shapiro, M., Trogan, E. & Fisher, E.A. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc. Natl. Acad. Sci. USA 100, 13531–13536 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin, K. et al. Thrombin stimulates smooth muscle cell differentiation from peripheral blood mononuclear cells via protease-activated receptor-1, RhoA, and myocardin. Circ. Res. 105, 214–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Caplice, N.M. et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc. Natl. Acad. Sci. USA 100, 4754–4759 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwata, H. et al. Bone marrow-derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages. Circulation 122, 2048–2057 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Wamhoff, B.R. et al. A G/C element mediates repression of the SM22α promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ. Res. 95, 981–988 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Feil, S. et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ. Res. 115, 662–667 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Swirski, F.K. & Nahrendorf, M. Do vascular smooth muscle cells differentiate to macrophages in atherosclerotic lesions? Circ. Res. 115, 605–606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allahverdian, S., Chehroudi, A.C., McManus, B.M., Abraham, T. & Francis, G.A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129, 1551–1559 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Cordes, K.R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoshida, T., Kaestner, K.H. & Owens, G.K. Conditional deletion of Krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ. Res. 102, 1548–1557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deaton, R.A., Gan, Q. & Owens, G.K. Sp1-dependent activation of KLF4 is required for PDGF-BB–induced phenotypic modulation of smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 296, H1027–H1037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshida, T., Gan, Q. & Owens, G.K. Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am. J. Physiol. Cell Physiol. 295, C1175–C1182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomas, J.A. et al. PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns. Am. J. Physiol. Heart Circ. Physiol. 296, H442–H452 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Pidkovka, N.A. et al. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ. Res. 101, 792–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Alexander, M.R. & Owens, G.K. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu. Rev. Physiol. 74, 13–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Gomez, D., Shankman, L.S., Nguyen, A.T. & Owens, G.K. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat. Methods 10, 171–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klein, D., Benchellal, M., Kleff, V., Jakob, H.G. & Ergun, S. Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells. Sci. Rep. 3, 2178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Klein, D. et al. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS ONE 6, e20540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiao, Q. et al. Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler. Thromb. Vasc. Biol. 26, 2244–2251 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Xiao, Q., Zeng, L., Zhang, Z., Hu, Y. & Xu, Q. Stem cell-derived Sca-1+ progenitors differentiate into smooth muscle cells, which is mediated by collagen IV-integrin α1/β1/αv and PDGF receptor pathways. Am. J. Physiol. Cell Physiol. 292, C342–C352 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Passman, J.N. et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc. Natl. Acad. Sci. USA 105, 9349–9354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McDonald, O.G., Wamhoff, B.R., Hoofnagle, M.H. & Owens, G.K. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J. Clin. Invest. 116, 36–48 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vladykovskaya, E. et al. Reductive metabolism increases the proinflammatory activity of aldehyde phospholipids. J. Lipid Res. 52, 2209–2225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Cherepanova, O.A. et al. Oxidized phospholipids induce type VIII collagen expression and vascular smooth muscle cell migration. Circ. Res. 104, 609–618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salmon, M., Gomez, D., Greene, E., Shankman, L. & Owens, G.K. Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22α promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ. Res. 111, 685–696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Regan, C.P., Adam, P.J., Madsen, C.S. & Owens, G.K. Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J. Clin. Invest. 106, 1139–1147 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feinberg, M.W. et al. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J. 26, 4138–4148 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736–2749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma, N. et al. Myeloid Krüppel-like factor 4 deficiency augments atherogenesis in Apoe−/− mice–brief report. Arterioscler. Thromb. Vasc. Biol. 32, 2836–2838 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, G. et al. Endothelial Krüppel-like factor 4 protects against atherothrombosis in mice. J. Clin. Invest. 122, 4727–4731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nguyen, A.T. et al. Smooth muscle cell plasticity: fact or fiction? Circ. Res. 112, 17–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Tang, Z. et al. Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat. Commun. 3, 875 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Foster, K.W. et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene 24, 1491–1500 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaubert, J., Cheng, J. & Segre, J.A. Ectopic expression of Krüppel-like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development 130, 2767–2777 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Katz, J.P. et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619–2628 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Katz, J.P. et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology 128, 935–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Dandré, F. & Owens, G.K. Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. Am. J. Physiol. Heart Circ. Physiol. 286, H2042–H2051 (2004).

    Article  PubMed  Google Scholar 

  50. Clément, N. et al. Notch3 and IL-1β exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-κB drives crosstalk. J. Cell Sci. 120, 3352–3361 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. Vengrenyuk, Y. et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 535–546 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Owens, G.K. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev. 75, 487–517 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Owens, G.K., Kumar, M.S. & Wamhoff, B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Wirth, A. et al. G12–G13-LARG–mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. 14, 64–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Vooijs, M., Jonkers, J. & Berns, A. A highly efficient ligand-regulated Cre recombinase mouse line shows that loxP recombination is position dependent. EMBO Rep. 2, 292–297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alexander, M.R. et al. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J. Clin. Invest. 122, 70–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. McDonald, O.G. & Owens, G.K. Programming smooth muscle plasticity with chromatin dynamics. Circ. Res. 100, 1428–1441 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mi, H., Muruganujan, A., Casagrande, J.T. & Thomas, P.D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Geisterfer, A.A., Peach, M.J. & Owens, G.K. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ. Res. 62, 749–756 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the valuable contributions of technicians M. McCanna and M. Bevard for their assistance in histological cutting and staining; R. Tripathi for assistance with cell culture work; J. Lannigan and M. Solga from the Flow Cytometry Core at the University of Virginia for their help designing flow cytometry panels and help running the cytometers; S. Guilot at the Advanced Microscopy Facility at University of Virginia for her help running the transmission electron microscope; J. Roithmayr, N. Hendley, M. Quetsch and M. Goodwin for their assistance in immunofluorescence image analysis; Y. Babiy for designing the cartoon in Supplementary Figure 6, and W. Evans for assistance in processing statistical analyses. We would also like to thank N. McGinn from the Department of Pathology, University of Virginia Hospital for the de-identified coronary arteries specimens; C. Murray from the University of Washington for the coronary artery heart transplant specimen; S. Offermanns from the Max Planck Institute for the Myh11-CreERT2 mice; K. Kaestner for the Klf4fl/fl mice; G. Randolph for the LysMCre/Cre mice; and A. Berns from the Netherlands Cancer Institute, Amsterdam, Netherlands, for the transgenic tamoxifen-inducible Cre (ERT-Cre) recombinase mice. This work was supported by US National Institutes of Health R01 grants HL057353, HL098538 and HL087867 to G.K.O., HL112904 to A.C.S., as well as a pilot grant from AstraZeneca as part of a University of Virginia–AstraZeneca Research Alliance to G.K.O.; and Mid-Atlantic American Heart Association fellowship grants 11PRE7170008 and 13POST17080043 to L.S.S. and D.G., respectively.

Author information

Authors and Affiliations

Authors

Contributions

L.S.S. conducted experiments; performed data analysis; generated most of the experimental mice; performed immunostaining, image analysis and flow cytometry; and was primary writer of the manuscript. D.G. performed in vitro ChIP analysis and conceived and performed all the ISH-PLA experiments. M.S. generated Tagln wild-type lacZ Apoe−/− mice, performed in vivo ChIP assays, and performed immunohistochemistry and data analysis. O.A.C. was involved in designing experiments and data analysis; assisted in image analysis, cell culture and animal experiments throughout the project. A.C.S. and B.I. participated in designing the immuno-transmission electron microscopy protocol and analysis of images. R.M.H. performed the MSC immunostaining and image analysis, and the Klf4 ChIP-seq; conducted MSC differentiation experiments; and helped design cartoons. G.F.A. conducted data analysis of ChIP-seq experiments. P.S. assisted in cell culture experiments and analysis of data. A.A.C.N. performed PDGFβR staining and analysis. E.S.G. assisted in animal experiments, conducted statistical analyses and performed immunohistochemistry and data analysis. L.S.S., D.G., M.S., O.A.C., E.S.G., B.I., G.J.R. and G.K.O. participated in making final manuscript revisions. G.K.O. supervised the entire project and had a major role in experimental design, data interpretation, and writing the manuscript.

Corresponding author

Correspondence to Gary K Owens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 & Supplementary Tables 1–4 (PDF 14960 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankman, L., Gomez, D., Cherepanova, O. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21, 628–637 (2015). https://doi.org/10.1038/nm.3866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing