Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization

Subjects

Abstract

Ocular neovascular diseases are a leading cause of blindness. Vascular endothelial growth factor (VEGF) blockade improves vision, but not all individuals respond to anti-VEGF treatment, making additional means to prevent neovascularization necessary. Slit-family proteins (Slits) are ligands of Roundabout (Robo) receptors that repel developing axons in the nervous system. Robo1 expression is altered in ocular neovascular diseases, and previous in vitro studies have reported both pro- and anti-angiogenic effects of Slits. However, genetic evidence supporting a role for Slits in ocular neovascularization is lacking. Here we generated conditional knockout mice deficient in various Slit and Robo proteins and found that Slit2 potently and selectively promoted angiogenesis via Robo1 and Robo2 in mouse postnatal retina and in a model of ocular neovascular disease. Mechanistically, Slit2 acting through Robo1 and Robo2 promoted the migration of endothelial cells. These receptors are required for both Slit2- and VEGF-induced Rac1 activation and lamellipodia formation. Thus, Slit2 blockade could potentially be used therapeutically to inhibit angiogenesis in individuals with ocular neovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Slit2 promotes retinal angiogenesis.
Figure 2: Abnormal retinal angiogenesis in Robo1- and Robo2-knockout mice.
Figure 3: Slit2 promotes sprouting angiogenesis through Robo1 and Robo2.
Figure 4: ROBO1 and ROBO2 regulate Slit2- and VEGF-A–induced RAC1 activation.
Figure 5: Targeting Slit2–Robo signaling blocks angiogenesis in OIR.

Similar content being viewed by others

References

  1. Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Med. 16, 1107–1111 (2010).

    CAS  PubMed  Google Scholar 

  2. Miller, J.W., Le Couter, J., Strauss, E.C. & Ferrara, N. Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology 120, 106–114 (2013).

    PubMed  Google Scholar 

  3. Lim, L.S., Mitchell, P., Seddon, J.M., Holz, F.G. & Wong, T.Y. Age-related macular degeneration. Lancet 379, 1728–1738 (2012).

    PubMed  Google Scholar 

  4. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    CAS  PubMed  Google Scholar 

  5. Kidd, T., Bland, K.S. & Goodman, C.S. Slit is the midline repellent for the robo receptor in Drosophila. Cell 96, 785–794 (1999).

    CAS  PubMed  Google Scholar 

  6. Ypsilanti, A.R., Zagar, Y. & Chedotal, A. Moving away from the midline: new developments for Slit and Robo. Development 137, 1939–1952 (2010).

    CAS  PubMed  Google Scholar 

  7. Koch, A.W. et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev. Cell 20, 33–46 (2011).

    CAS  PubMed  Google Scholar 

  8. Zelina, P. et al. Signaling switch of the axon guidance receptor Robo3 during vertebrate evolution. Neuron 84, 1258–1272 (2014).

    CAS  PubMed  Google Scholar 

  9. Jones, C.A. et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat. Med. 14, 448–453 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones, C.A. et al. Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat. Cell Biol. 11, 1325–1331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, L. et al. Expression of Robo4 in the fibrovascular membranes from patients with proliferative diabetic retinopathy and its role in RF/6A and RPE cells. Mol. Vis. 15, 1057–1069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, W. et al. The role of SLIT-ROBO signaling in proliferative diabetic retinopathy and retinal pigment epithelial cells. Mol. Vis. 17, 1526–1536 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, B. et al. Repulsive axon guidance molecule Slit3 is a novel angiogenic factor. Blood 114, 4300–4309 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, X.M. et al. Slit-Robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis. Biochem. Biophys. Res. Commun. 396, 571–577 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Urbich, C. et al. HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells. Blood 113, 5669–5679 (2009).

    CAS  PubMed  Google Scholar 

  16. Kaur, S. et al. Robo4 signaling in endothelial cells implies attraction guidance mechanisms. J. Biol. Chem. 281, 11347–11356 (2006).

    CAS  PubMed  Google Scholar 

  17. Plump, A.S. et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232 (2002).

    CAS  PubMed  Google Scholar 

  18. Fouquet, C. et al. Robo1 and Robo2 control the development of the lateral olfactory tract. J. Neurosci. 27, 3037–3045 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Morlot, C. et al. Structural insights into the Slit-Robo complex. Proc. Natl. Acad. Sci. USA 104, 14923–14928 (2007).

    CAS  PubMed  Google Scholar 

  20. Guo, C., Yang, W. & Lobe, C.G. A Cre recombinase transgene with mosaic, widespread tamoxifen-inducible action. Genesis 32, 8–18 (2002).

    CAS  PubMed  Google Scholar 

  21. Birdsey, G.M. et al. Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 111, 3498–3506 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guijarro-Muñoz, I. et al. The axonal repellent Slit2 inhibits pericyte migration: potential implications in angiogenesis. Exp. Cell Res. 318, 371–378 (2012).

    PubMed  Google Scholar 

  23. Sörensen, I., Adams, R.H. & Gossler, A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113, 5680–5688 (2009).

    PubMed  Google Scholar 

  24. Yoshioka, K. et al. Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat. Med. 18, 1560–1569 (2012).

    CAS  PubMed  Google Scholar 

  25. del Toro, R. et al. Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116, 4025–4033 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, B. et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4, 19–29 (2003).

    PubMed  Google Scholar 

  27. Grieshammer, U. et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709–717 (2004).

    CAS  PubMed  Google Scholar 

  28. Lu, W. et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am. J. Hum. Genet. 80, 616–632 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Long, H. et al. Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42, 213–223 (2004).

    CAS  PubMed  Google Scholar 

  30. Liu, D. et al. Neuronal chemorepellent Slit2 inhibits vascular smooth muscle cell migration by suppressing small GTPase Rac1 activation. Circ. Res. 98, 480–489 (2006).

    CAS  PubMed  Google Scholar 

  31. Wang, Y. et al. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151, 1332–1344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Adams, R.H. & Eichmann, A. Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2, a001875 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    CAS  PubMed  Google Scholar 

  34. Lu, X. et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432, 179–186 (2004).

    CAS  PubMed  Google Scholar 

  35. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    CAS  PubMed  Google Scholar 

  36. Hellström, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    PubMed  Google Scholar 

  37. Larrivée, B. et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev. Cell 22, 489–500 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Small, E.M., Sutherland, L.B., Rajagopalan, K.N., Wang, S. & Olson, E.N. MicroRNA-218 regulates vascular patterning by modulation of Slit-Robo signaling. Circ. Res. 107, 1336–1344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fish, J.E. et al. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development 138, 1409–1419 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    CAS  PubMed  Google Scholar 

  41. Connor, K.M. et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat. Protoc. 4, 1565–1573 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mehlen, P., Delloye-Bourgeois, C. & Chedotal, A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat. Rev. Cancer 11, 188–197 (2011).

    CAS  PubMed  Google Scholar 

  43. Benedito, R. et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484, 110–114 (2012).

    CAS  PubMed  Google Scholar 

  44. Germain, S., Monnot, C., Muller, L. & Eichmann, A. Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr. Opin. Hematol. 17, 245–251 (2010).

    CAS  PubMed  Google Scholar 

  45. Domyan, E.T. et al. Roundabout receptors are critical for foregut separation from the body wall. Dev. Cell 24, 52–63 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Marillat, V. et al. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J. Comp. Neurol. 442, 130–155 (2002).

    PubMed  Google Scholar 

  47. Nguyen-Ba-Charvet, K.T. et al. Multiple roles for slits in the control of cell migration in the rostral migratory stream. J. Neurosci. 24, 1497–1506 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Di Meglio, T. Nguyen-Ba-Charvet, K.T., Tessier-Lavigne, M., Sotelo, C. & Chédotal, A. Molecular mechanisms controlling midline crossing by precerebellar neurons. J. Neurosci. 28, 6285–6294 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chauvet, S. et al. Gating of Sema3E/PlexinD1 signaling by neuropilin-1 switches axonal repulsion to attraction during brain development. Neuron 56, 807–822 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, Y. et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J. Cell Biol. 188, 115–130 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jones, E.A., Yuan, L., Breant, C., Watts, R.J. & Eichmann, A. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development 135, 2479–2488 (2008).

    CAS  PubMed  Google Scholar 

  52. Lanahan, A. et al. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev. Cell 25, 156–168 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the Agence Nationale de la Recherche (ANR; ANR-11BSV102502 to A.C. and A.E.), the Fondation pour la Recherche Médicale (“Programme Équipe FRM” to A.C.; DEQ20120323700), Sanofi-Fovea (to A.C.), Fondation Leducq (Artemis Transatlantic Network of Excellence, to A.E.) and the Thome Foundation for Age-Related Macular Degeneration (to A.E.). It was performed in the frame of the LABEX LIFESENSES (reference ANR-10-LABX-65), supported by French state funds managed by the ANR within the Investissements d'Avenir program under reference ANR-11-IDEX-0004-02. We thank F. Sennlaub for help with OIR experiments; J. Sahel and T. Debeir for helpful suggestions; Y. Zagar, M. Belle and C. Dominici for technical help; and K. Lyer for help with the initial phenotypic analysis. We also thank M. Tessier-Lavigne for the Slit1- and Slit2-knockout mice, J. Livet for the CAG:CreERTM mouse line and R. Adams for the Cdh5:CreERT2 mouse line. VEGF-A–AP constructs were provided by C. Ruiz de Almodovar (Vesalius Research Center, Leuven, Belgium). pGEX-PAK-CRIB was a kind gift from M. Schwartz (Yale University, New Haven, Connecticut, USA). The Slit2(lox) mutant mouse line was established at the Mouse Clinical Institute (Institut Clinique de la Souris, Strasbourg, France) in the Targeted Mutagenesis and Transgenesis Department.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and A.E. supervised the project. A.C., A.E., N.R. and A.D. designed the experiments and wrote the manuscript. N.R., A.D., T.M., R.-A.N.C., G.G., B.C. and L.P.-F. performed the experiments and analyzed the data. L.M. generated the Robo1; Robo2lox mice.

Corresponding authors

Correspondence to Anne Eichmann or Alain Chédotal.

Ethics declarations

Competing interests

This project was supported in part by a grant from Sanofi-Fovea to A.C.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Table 1 (PDF 2849 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rama, N., Dubrac, A., Mathivet, T. et al. Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization. Nat Med 21, 483–491 (2015). https://doi.org/10.1038/nm.3849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing