Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homeostatic regulation of T cell trafficking by a B cell–derived peptide is impaired in autoimmune and chronic inflammatory disease

Abstract

During an inflammatory response, lymphocyte recruitment into tissue must be tightly controlled because dysregulated trafficking contributes to the pathogenesis of chronic disease. Here we show that during inflammation and in response to adiponectin, B cells tonically inhibit T cell trafficking by secreting a peptide (PEPITEM) proteolytically derived from 14.3.3 zeta delta (14.3.3.ζδ) protein. PEPITEM binds cadherin-15 on endothelial cells, promoting synthesis and release of sphingosine-1 phosphate, which inhibits trafficking of T cells without affecting recruitment of other leukocytes. Expression of adiponectin receptors on B cells and adiponectin-induced PEPITEM secretion wanes with age, implying immune senescence of the pathway. Additionally, these changes are evident in individuals with type 1 diabetes or rheumatoid arthritis, and circulating PEPITEM in patient serum is reduced compared to that of healthy age-matched donors. In both diseases, tonic inhibition of T cell trafficking across inflamed endothelium is lost. Control of patient T cell trafficking is re-established by treatment with exogenous PEPITEM. Moreover, in animal models of peritonitis, hepatic ischemia-reperfusion injury, Salmonella infection, uveitis and Sjögren's syndrome, PEPITEM reduced T cell recruitment into inflamed tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell migration across endothelial cells is regulated by a soluble agent released from B cells stimulated with adiponectin.
Figure 2: PEPITEM inhibits T cell transmigration by binding to cadherin-15 on endothelial cells.
Figure 3: PEPITEM induces the S1P release from endothelial cells, which inhibits T cell migration.
Figure 4: PEPITEM inhibits T cell migration in vivo.
Figure 5: The PEPITEM pathway is compromised in T1D and rheumatoid arthritis.
Figure 6: Schematic depicting B cell–mediated regulation of T cell trafficking during inflammation.

Similar content being viewed by others

References

  1. Cyster, J.G. Lymphoid organ development and cell migration. Immunol. Rev. 195, 5–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Koulmanda, M. et al. Modification of adverse inflammation is required to cure new-onset type 1 diabetic hosts. Proc. Natl. Acad. Sci. USA 104, 13074–13079 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Pober, J.S. & Cotran, R.S. The role of endothelial cells in inflammation. Transplantation 50, 537–544 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Kadowaki, T. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784–1792 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ouedraogo, R. et al. Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. J. Clin. Invest. 117, 1718–1726 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pang, T.T. et al. Inhibition of islet immunoreactivity by adiponectin is attenuated in human type 1 diabetes. J. Clin. Endocrinol. Metab. 98, E418–E428 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Pang, T.T. & Narendran, P. The distribution of adiponectin receptors on human peripheral blood mononuclear cells. Ann. NY Acad. Sci. 1150, 143–145 (2008).

    Article  PubMed  Google Scholar 

  8. Lalor, P.F., Shields, P., Grant, A. & Adams, D.H. Recruitment of lymphocytes to the human liver. Immunol. Cell Biol. 80, 52–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Olsson, R. & Carlsson, P.O. The pancreatic islet endothelial cell: emerging roles in islet function and disease. Int. J. Biochem. Cell Biol. 38, 710–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Andrew, D.P. et al. Transendothelial migration and trafficking of leukocytes in LFA-1-deficient mice. Eur. J. Immunol. 28, 1959–1969 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Brezinschek, R.I., Lipsky, P.E., Galea, P., Vita, R. & Oppenheimer-Marks, N. Phenotypic characterization of CD4+ T cells that exhibit a transendothelial migratory capacity. J. Immunol. 154, 3062–3077 (1995).

    CAS  PubMed  Google Scholar 

  12. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat. Immunol. 2, 515–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Ley, K., Laudanna, C., Cybulsky, M.I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ma, L. et al. CD31 exhibits multiple roles in regulating T lymphocyte trafficking in vivo. J. Immunol. 189, 4104–4111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shulman, Z. et al. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30, 384–396 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Springer, T.A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. McGettrick, H.M. et al. Direct observations of the kinetics of migrating T cells suggest active retention by endothelial cells with continual bidirectional migration. J. Leukoc. Biol. 85, 98–107 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Piali, L. et al. The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. Eur. J. Immunol. 28, 961–972 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Spiegel, S. & Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11, 403–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones, D.A., McIntire, L.V., Smith, C.W. & Picker, L.J. A two-step adhesion cascade for T cell/endothelial cell interactions under flow conditions. J. Clin. Invest. 94, 2443–2450 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luscinskas, F.W., Ding, H. & Lichtman, A.H. P-selectin and vascular cell adhesion molecule 1 mediate rolling and arrest, respectively, of CD4+ T lymphocytes on tumor necrosis factor α–activated vascular endothelium under flow. J. Exp. Med. 181, 1179–1186 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Yago, T. et al. Analysis of an initial step of T cell adhesion to endothelial monolayers under flow conditions. J. Immunol. 154, 1216–1222 (1995).

    CAS  PubMed  Google Scholar 

  23. Ahmed, S.R. et al. Prostaglandin D2 regulates CD4+ memory T cell trafficking across blood vascular endothelium and primes these cells for clearance across lymphatic endothelium. J. Immunol. 187, 1432–1439 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Fukuhara, S. et al. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J. Clin. Invest. 122, 1416–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hisano, Y., Kobayashi, N., Yamaguchi, A. & Nishi, T. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS ONE 7, e38941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nijnik, A. et al. The role of sphingosine-1-phosphate transporter Spns2 in immune system function. J. Immunol. 189, 102–111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ledgerwood, L.G. et al. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat. Immunol. 9, 42–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Pham, T.H., Okada, T., Matloubian, M., Lo, C.G. & Cyster, J.G. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity 28, 122–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Hammad, S.M., Al Gadban, M.A., Semler, A.J. & Klein, R.L. Sphingosine 1-phosphate distribution in human plasma: associations with lipid profiles. J. Lipids 2012, 180705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murata, N. et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 352, 809–815 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sattler, K. & Levkau, B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc. Res. 82, 201–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, J. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 5, 647–656 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Johansson, C. et al. Elevated neutrophil, macrophage and dendritic cell numbers characterize immune cell populations in mice chronically infected with Salmonella. Microb. Pathog. 41, 49–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Lalor, P.F., Lai, W.K., Curbishley, S.M., Shetty, S. & Adams, D.H. Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo. World J. Gastroenterol. 12, 5429–5439 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong, J. et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J. Clin. Invest. 99, 2782–2790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bombardieri, M. et al. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. J. Immunol. 189, 3767–3776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bridges, D. & Moorhead, G.B. 14–3-3 proteins: a number of functions for a numbered protein. Sci. STKE 2005, re10 (2005).

    PubMed  Google Scholar 

  41. Dougherty, M.K. & Morrison, D.K. Unlocking the code of 14–3-3. J. Cell Sci. 117, 1875–1884 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Fu, H., Subramanian, R.R. & Masters, S.C. 14–3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Layfield, R. et al. Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins. Neurosci. Lett. 209, 57–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Lodygin, D. & Hermeking, H. The role of epigenetic inactivation of 14-3-3σ in human cancer. Cell Res. 15, 237–246 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Guzman, M., Dolfi, F., Russello, M. & Vuori, K. Cell adhesion regulates the interaction between the docking protein p130(Cas) and the 14-3-3 proteins. J. Biol. Chem. 274, 5762–5768 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Han, D.C., Rodriguez, L.G. & Guan, J.L. Identification of a novel interaction between integrin beta1 and 14-3-3β. Oncogene 20, 346–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Mhawech, P. 14-3-3 proteins–an update. Cell Res. 15, 228–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Rodriguez, L.G. & Guan, J.L. 14-3-3 regulation of cell spreading and migration requires a functional amphipathic groove. J. Cell. Physiol. 202, 285–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Choi, E.Y. et al. Regulation of LFA-1–dependent inflammatory cell recruitment by Cbl-b and 14-3-3 proteins. Blood 111, 3607–3614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fagerholm, S.C., Hilden, T.J., Nurmi, S.M. & Gahmberg, C.G. Specific integrin alpha and beta chain phosphorylations regulate LFA-1 activation through affinity-dependent and -independent mechanisms. J. Cell Biol. 171, 705–715 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuan, Y. et al. Identification of a novel 14-3-3ζ binding site within the cytoplasmic domain of platelet glycoprotein Ibα that plays a key role in regulating the von Willebrand factor binding function of glycoprotein Ib-IX. Circ. Res. 105, 1177–1185 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Roviezzo, F. et al. Sphingosine-1-phosphate modulates vascular permeability and cell recruitment in acute inflammation in vivo. J. Pharmacol. Exp. Ther. 337, 830–837 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Mehta, D., Konstantoulaki, M., Ahmmed, G.U. & Malik, A.B. Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates Rac activation and adherens junction assembly in endothelial cells. J. Biol. Chem. 280, 17320–17328 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. LeBien, T.W. & Tedder, T.F. B lymphocytes: how they develop and function. Blood 112, 1570–1580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Serreze, D.V. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new 'speed congenic' stock of NOD.Ig mu null mice. J. Exp. Med. 184, 2049–2053 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Finnegan, A., Ashaye, S. & Hamel, K.M. B effector cells in rheumatoid arthritis and experimental arthritis. Autoimmunity 45, 353–363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pescovitz, M.D. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Vita, S. et al. Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis. Evidence of a pathogenic role for B cells. Arthritis Rheum. 46, 2029–2033 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Rainger, G.E., Stone, P., Morland, C.M. & Nash, G.B. A novel system for investigating the ability of smooth muscle cells and fibroblasts to regulate adhesion of flowing leukocytes to endothelial cells. J. Immunol. Methods 255, 73–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Cooke, B.M., Usami, S., Perry, I. & Nash, G.B. A simplified method for culture of endothelial cells and analysis of adhesion of blood cells under conditions of flow. Microvasc. Res. 45, 33–45 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Butler, L.M., Rainger, G.E., Rahman, M. & Nash, G.B. Prolonged culture of endothelial cells and deposition of basement membrane modify the recruitment of neutrophils. Exp. Cell Res. 310, 22–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Eidhammer, I. et al. Computational and Statistical Methods for Protein Quantification by Mass Spectrometry (John Wiley & Sons, 2012).

  63. Rajakariar, R. et al. Novel biphasic role for lymphocytes revealed during resolving inflammation. Blood 111, 4184–4192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoiseth, S.K. & Stocker, B.A. Aromatic-dependent Salmonella Typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239 (1981).

    Article  CAS  PubMed  Google Scholar 

  65. Cunningham, A.F. et al. Responses to the soluble flagellar protein FliC are Th2, while those to FliC on Salmonella are Th1. Eur. J. Immunol. 34, 2986–2995 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Cascalho, M. et al. A quasi-monoclonal mouse. Science 272, 1649–1652 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Flores-Langarica, A. et al. Systemic flagellin immunization stimulates mucosal CD103+ dendritic cells and drives Foxp3+ regulatory T cell and IgA responses in the mesenteric lymph node. J. Immunol. 189, 5745–5754 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Kerr, E.C. et al. Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J. Autoimmun. 31, 354–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Alberti, K.G. & Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Sams and S. Tullin from Novo Nordisk for providing high-molecular-weight recombinant adiponectin. We are grateful to N. Shimwell and D. Ward for assistance with mass spectrometry, and to G. Pui Choy for her help with animal experiments (all from the University of Birmingham, UK). Thanks also to N. Hogg (Cancer Research UK, London Research Institute, UK) for the activation epitope–sensitive anti-LFA-1 antibody, KIM127. We also thank C. McDonnel (GE Healthcare) for her help with the Biacore experiments and R.A. Kingsley for the Salmonella Typhimurium strain SL3261 (Wellcome Trust Sanger Institute, Cambridge, UK). We also thank D. Hardie for helping with the automated cell sorting (University of Birmingham, UK) and the University of Bristol Flow Cytometry Facility. We thank P. Nightingale (University Hospitals Birmingham NHS Trust) for advice on statistical analysis. This work was supported by grants from Diabetes UK (P.N., G.E.R.) (097825/Z/11/A), the Wellcome Trust (P.N., G.E.R.; ISSF 12/13-097825/Z/11/A), an Early Career Award from the Society for Endocrinology (M.C.), the Medical Research Council (CIC 12011) a senior fellowship for L.S.K.W. (G0802382) and the Juvenile Diabetes Research Foundation (P.N., G.E.R.; 5-2013-207). Work in the laboratories of G.E.R. is supported by the British Heart Foundation at Project grant (PG/11/49/28983) and Programme grant (RG/12/7/29693) level. H.M.M. was supported by an Arthritis Research UK Career Development Fellowship (19899). A.K. was supported by a National Institute for Health Research, Research for Patient Benefit (PB-PG-0609-19093). F.B. is supported by a Wellcome Trust Clinician Scientist Fellowship. A.F. was supported by an Arthritis Research UK Clinician Scientist Fellowship (18547). The research leading to the rheumatoid arthritis subject data was funded within the FP7 HEALTH programme under the grant agreement FP7-HEALTH-F2-2012-305549. This report is independent research which was partly supported by the National Institute for Health Research/Wellcome Trust Clinical Research Facility at University Hospitals Birmingham NHS Foundation Trust. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.C. conceived and performed experiments, analyzed and interpreted the data, and co-wrote the manuscript. H.M.M. conceived, performed experiments, analyzed and interpreted the data. B.A., S.J.K., C.M.Y., A.K., A.O., M.A., M.H., S.N., J.R.H., D.A.C. and J.R. performed experiments and analyzed the data. A.M., F.B., A.F.C., K.R., A.F., D.A.C., A.D.D., N.K., L.S.K.W., C.D.B. and G.B.N. organized and conducted the study, including analysis, data interpretation and critique of the manuscript. K.R. and A.F. recruited and diagnosed patients in early arthritis clinics, and acquired the clinical data. P.N. conceived, designed and organized the T1D study and analyzed and interpreted the data. G.E.R. conceived, designed, organized and conducted the study, including analysis and interpretation of data, and co-wrote the manuscript.

Corresponding authors

Correspondence to Parth Narendran or G Ed Rainger.

Ethics declarations

Competing interests

M.C., H.M.M., P.N. and G.E.R. hold patents for the therapeutic and diagnostic use of PEPITEM (WO2013/104928) and cadherin-15 (WO2015/001356) in autoimmune disease, chronic inflammatory disease and other diseases in which T cells contribute to pathogenesis, as well as for the use of adipoRs expression as a biomarker for rheumatoid arthritis (WO2014/080204). The other authors have no competing financial interests to declare.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–8. (PDF 855 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chimen, M., McGettrick, H., Apta, B. et al. Homeostatic regulation of T cell trafficking by a B cell–derived peptide is impaired in autoimmune and chronic inflammatory disease. Nat Med 21, 467–475 (2015). https://doi.org/10.1038/nm.3842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing