4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors

Abstract

Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic antitumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We show that tonic CAR CD3-ζ phosphorylation, triggered by antigen-independent clustering of CAR single-chain variable fragments, can induce early exhaustion of CAR T cells that limits antitumor efficacy. Such activation is present to varying degrees in all CARs studied, except the highly effective CD19 CAR. We further determine that CD28 costimulation augments, whereas 4-1BB costimulation reduces, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the antitumor effects of CD19 CARs and for the observations that CD19 CAR T cells incorporating the 4-1BB costimulatory domain are more persistent than those incorporating CD28 in clinical trials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: GD2.28z CAR T cells have discrepant in vitro and in vivo activity.
Figure 2: GD2.28z CAR T cells become exhausted during ex vivo expansion.
Figure 3: Tonic CAR signaling during ex vivo expansion leads to early exhaustion.
Figure 4: Tonic GD2.28z CAR signaling is antigen independent.
Figure 5: 4-1BB endodomain ameliorates exhaustion in CAR T cells.
Figure 6: Ameliorating effect of 4-1BB signaling is associated with a unique transcriptional profile.

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Lee, D.W. et al. The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer. Clin. Cancer Res. 18, 2780–2790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Sadelain, M., Brentjens, R. & Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discovery 3, 388–398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Lee, D.W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Maude, S.L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Kochenderfer, J.N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells. Blood 119, 2709–2720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Porter, D.L. et al. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Grupp, S.A. et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822–1826 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Brentjens, R.J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra138 (2013).

    Article  CAS  Google Scholar 

  10. 10

    Davila, M.L. et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra225 (2014).

    Article  CAS  Google Scholar 

  11. 11

    Kershaw, M.H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Park, J.R. et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol. Ther. 15, 825–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Pule, M.A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Louis, C.U. et al. Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Till, B.G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4–1BB domains: pilot clinical trial results. Blood 119, 3940–3950 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Lamers, C.H.J. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Robbins, P.F. et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J. Immunol. 173, 7125–7130 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kowolik, C.M. et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66, 10995–11004 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Milone, M.C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Haso, W. et al. Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121, 1165–1174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Ahmadzadeh, M. et al. Tumor antigen–specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Zhou, Q. et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117, 4501–4510 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Woo, S.-R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Topalian, S.L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Virgin, H.W., Wherry, E.J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Wherry, E.J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Rossig, C. et al. Targeting of GD2-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int. J. Cancer 94, 228–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Pulè, M.A. et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol. Ther. 12, 933–941 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Hudecek, M. et al. The non-signaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res. 3, 125–135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Kochenderfer, J.N. et al. Construction and pre-clinical evaluation of an anti-CD19 chimeric antigen receptor. J. Immunother. 32, 689–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Doering, T.A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37, 1130–1144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Paley, M.A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Friend, L.D. et al. A dose-dependent requirement for the proline motif of CD28 in cellular and humoral immunity revealed by a targeted knockin mutant. J. Exp. Med. 203, 2121–2133 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Dodson, L.F. et al. Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol. Cell. Biol. 29, 3710–3721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Zhao, Y. et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183, 5563–5574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Nieba, L., Honegger, A., Krebber, C. & Plückthun, A. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng. 10, 435–444 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Dolezal, O. et al. Single-chain Fv multimers of the anti-neuraminidase antibody NC10: the residue at position 15 in the VL domain of the scFv-0 (VL− VH) molecule is primarily responsible for formation of a tetramer–trimer equilibrium. Protein Eng. 16, 47–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Whitlow, M. et al. Multivalent Fvs: characterization of single-chain Fv oligomers and preparation of a bispecific Fv. Protein Eng. 7, 1017–1026 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Wherry, E.J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Crawford, A. et al. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 40, 289–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  45. 45

    Guest, R.D. et al. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J. Immunother. 28, 203–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    James, S.E. et al. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J. Immunol. 180, 7028–7038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Frigault, M.J. et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. http://dx.doi.org/10.1158/2326-6066.CIR-14-0186 (2015).

  48. 48

    Agnellini, P. et al. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc. Natl. Acad. Sci. USA 104, 4565–4570 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Vezys, V. et al. 4–1BB signaling synergizes with programmed death ligand 1 blockade to augment CD8 T cell responses during chronic viral infection. J. Immunol. 187, 1634–1642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Wang, C. et al. 4–1BBL induces TNF receptor-associated factor 1-dependent Bim modulation in human T cells and is a critical component in the costimulation-dependent rescue of functionally impaired HIV-specific CD8 T cells. J. Immunol. 179, 8252–8263 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Dittus, C. et al. Chimeric antigen receptor modified T cells directed against CD19 (CTL019 cells) have long-term persistence and induce durable responses in relapsed, refractory CLL. Blood 122, 4162 (2013).

    Article  PubMed  Google Scholar 

  52. 52

    Doedens, A.L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Pearce, E.L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    van der Windt, G.J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Roederer, M., Nozzi, J.L. & Nason, M.C. SPICE: Exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A 79, 167–174 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Morgan, R.A. et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum. Gene Ther. 23, 1043–1053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Brochet, X., Lefranc, M.-P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36 (suppl. 2), W503–W508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Sen, G. et al. Induction of IgG antibodies by an anti-idiotype antibody mimicking disialoganglioside GD2. J. Immunother. 21, 75–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Jena, B. et al. Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials. PLoS ONE 8, e57838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Edelstein, A. et al. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

  62. 62

    Elangovan, M. et al. Characterization of one-and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29, 58–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Olenych, S.G., Claxton, N.S., Ottenberg, G.K. & Davidson, M.W. The fluorescent protein color palette. Curr. Protoc. Cell Biol. 21, 21.5 (2007).

    Google Scholar 

  65. 65

    Martin, C.E. et al. IL-7/anti–IL-7 mAb complexes augment cytokine potency in mice through association with IgG-Fc and by competition with IL-7R. Blood 121, 4484–4492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We kindly thank S. Gottschalk (Texas Children's Hospital) for providing sequences for the 14g2a scFv and IgG1 CH2CH3; J. Kochenderfer (National Cancer Institute, NCI, US National Institutes of Health, NIH) for the H3 MSGV-FMC63-28z retroviral vector producer line; S. Grupp (Children's Hospital of Philadelphia) for the NALM6-GL cell line; R. Morgan (BlueBird Bio, previously NCI, NIH) for the MSGV-139-28z and MSGV-4D5-28BBz vectors; and C. June (University of Pennsylvania) for sequences to the 4-1BB CAR endodomain. We also thank L. Cooper (M.D. Anderson) for providing the 136.20.1, FMC63 anti-idiotype antibody; the Biological Research Branch of NCI for providing the 1A7, 14g2a anti-idiotype antibody; the Clinical Support Laboratory of the Frederick National Laboratory for Cancer Research (FNLCR) for assisting in MesoScale cytokine release assays; and the Laboratory of Molecular Technology (LMT) Microarray Group of FNLCR for assisting in microarray assays. We thank N. Restifo and M. Roederer for careful review of this manuscript. This work was supported by the Intramural Research Program of the NIH, including the NCI and the National Institute of Biomedical Imaging and Bioengineering (NIBIB): ZIA BC 011073 (A.H.L., K.M.W., J.P.S., A.J.W., M.E.K., V.R.V., R.J.O. and C.L.M); ZIA BC 011565 (W.M.H. and T.J.F.); ZIA BC 011332 (M.M. and R.N.K.); and ZIA EB 000071-06 (M.I. and G.H.P.) This research was also supported by a Stand Up To Cancer – St. Baldrick's – NCI Pediatric Dream Team Translational Cancer Research Grant. Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research.

Author information

Affiliations

Authors

Contributions

A.H.L., W.M.H., J.F.S., M.M., M.I., M.E.K., R.N.K., G.H.P., T.J.F., R.J.O. and C.L.M. designed the research; A.H.L., W.M.H., K.M.W., M.M., M.I., J.P.S., A.J.W., M.E.K., V.R.V. and G.H.P. conducted experiments; A.H.L., W.M.H., J.F.S., M.M., M.I., G.H.P., T.J.F., R.J.O. and C.L.M. analyzed data; and A.H.L. and C.L.M. wrote the paper.

Corresponding author

Correspondence to Crystal L Mackall.

Ethics declarations

Competing interests

R.J.O. and C.L.M. are co-inventors of the CD22-CAR described in this report. The authors declare no other competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 6526 kb)

Supplementary Table 1

All Probes - All comparisons (XLSX 24877 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Long, A., Haso, W., Shern, J. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21, 581–590 (2015). https://doi.org/10.1038/nm.3838

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing