Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeting the MLL complex in castration-resistant prostate cancer



Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Although prior work has focused on targeting AR directly, co-activators of AR signaling, which may represent new therapeutic targets, are relatively underexplored. Here we demonstrate that the mixed-lineage leukemia protein (MLL) complex, a well-known driver of MLL fusion–positive leukemia, acts as a co-activator of AR signaling. AR directly interacts with the MLL complex via the menin–MLL subunit. Menin expression is higher in CRPC than in both hormone-naive prostate cancer and benign prostate tissue, and high menin expression correlates with poor overall survival of individuals diagnosed with prostate cancer. Treatment with a small-molecule inhibitor of menin–MLL interaction blocks AR signaling and inhibits the growth of castration-resistant tumors in vivo in mice. Taken together, this work identifies the MLL complex as a crucial co-activator of AR and a potential therapeutic target in advanced prostate cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Androgen receptor interacts with MLL-complex proteins.
Figure 2: MLL-complex proteins are important for AR signaling and cell growth.
Figure 3: AR and ASH2L are recruited to the same genomic loci upon androgen stimulation.
Figure 4: AR directly interacts with menin.
Figure 5: Menin is upregulated in both localized and metastatic CRPC.
Figure 6: A menin–MLL small molecule inhibitor impairs prostate cancer growth in mice.

Accession codes

Primary accessions

Gene Expression Omnibus


  1. 1

    Damber, J.E. & Aus, G. Prostate cancer. Lancet 371, 1710–1721 (2008).

    PubMed  Google Scholar 

  2. 2

    Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  3. 3

    de Bono, J.S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Scher, H.I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    CAS  PubMed  Google Scholar 

  5. 5

    Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Smith, M.R., Cook, R., Lee, K.A. & Nelson, J.B. Disease and host characteristics as predictors of time to first bone metastasis and death in men with progressive castration-resistant nonmetastatic prostate cancer. Cancer 117, 2077–2085 (2011).

    PubMed  Google Scholar 

  7. 7

    Scher, H.I. & Sawyers, C.L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

    CAS  PubMed  Google Scholar 

  8. 8

    Chen, C.D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    PubMed  Google Scholar 

  9. 9

    Sun, S. et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J. Clin. Invest. 120, 2715–2730 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Taplin, M.E. et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332, 1393–1398 (1995).

    CAS  PubMed  Google Scholar 

  11. 11

    Asangani, I.A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Dou, Y. & Hess, J.L. Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int. J. Hematol. 87, 10–18 (2008).

    CAS  PubMed  Google Scholar 

  13. 13

    Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13, 713–719 (2006).

    CAS  PubMed  Google Scholar 

  14. 14

    Hughes, C.M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    CAS  PubMed  Google Scholar 

  15. 15

    Steward, M.M. et al. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat. Struct. Mol. Biol. 13, 852–854 (2006).

    CAS  PubMed  Google Scholar 

  16. 16

    Yokoyama, A. et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123, 207–218 (2005).

    CAS  PubMed  Google Scholar 

  17. 17

    Chandrasekharappa, S.C. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404–407 (1997).

    CAS  PubMed  Google Scholar 

  18. 18

    Caslini, C. et al. Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res. 67, 7275–7283 (2007).

    CAS  PubMed  Google Scholar 

  19. 19

    Grembecka, J. et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8, 277–284 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Jin, S. et al. c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J. Clin. Invest. 120, 593–606 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Yokoyama, A. & Cleary, M.L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Dreijerink, K.M. et al. Menin links estrogen receptor activation to histone H3K4 trimethylation. Cancer Res. 66, 4929–4935 (2006).

    CAS  PubMed  Google Scholar 

  23. 23

    Imachi, H. et al. Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance. Breast Cancer Res. Treat. 122, 395–407 (2010).

    CAS  PubMed  Google Scholar 

  24. 24

    Xu, B. et al. Menin promotes hepatocellular carcinogenesis and epigenetically up-regulates Yap1 transcription. Proc. Natl. Acad. Sci. USA 110, 17480–17485 (2013).

    CAS  PubMed  Google Scholar 

  25. 25

    Funato, K., Major, T., Lewis, P.W., Allis, C.D. & Tabar, V. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346, 1529–1533 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Grasso, C.S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Prensner, J.R. et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat. Biotechnol. 29, 742–749 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Rhodes, D.R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Nakagawa, T. et al. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PLoS ONE 3, e2318 (2008).

    PubMed  PubMed Central  Google Scholar 

  31. 31

    Korenchuk, S. et al. VCaP, a cell-based model system of human prostate cancer. In Vivo 15, 163–168 (2001).

    CAS  PubMed  Google Scholar 

  32. 32

    Cai, C., Wang, H., Xu, Y., Chen, S. & Balk, S.P. Reactivation of androgen receptor-regulated TMPRSS2:ERG gene expression in castration-resistant prostate cancer. Cancer Res. 69, 6027–6032 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Borkin, D. et al. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell (in the press).

  34. 34

    Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    PubMed  Google Scholar 

  35. 35

    Mo, R., Rao, S.M. & Zhu, Y.J. Identification of the MLL2 complex as a coactivator for estrogen receptor alpha. J. Biol. Chem. 281, 15714–15720 (2006).

    CAS  PubMed  Google Scholar 

  36. 36

    Shi, L. et al. Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc. Natl. Acad. Sci. USA 108, 7541–7546 (2011).

    CAS  PubMed  Google Scholar 

  37. 37

    Zhou, H. et al. Structure-based design of high-affinity macrocyclic peptidomimetics to block the menin-mixed lineage leukemia 1 (MLL1) protein-protein interaction. J. Med. Chem. 56, 1113–1123 (2013).

    CAS  PubMed  Google Scholar 

  38. 38

    Arredouani, M.S. et al. Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin. Cancer Res. 15, 5794–5802 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Liu, P. et al. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res. 66, 4011–4019 (2006).

    CAS  PubMed  Google Scholar 

  40. 40

    Tomlins, S.A. et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 39, 41–51 (2007).

    CAS  PubMed  Google Scholar 

  41. 41

    Wallace, T.A. et al. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 68, 927–936 (2008).

    CAS  PubMed  Google Scholar 

  42. 42

    Yu, Y.P. et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J. Clin. Oncol. 22, 2790–2799 (2004).

    CAS  PubMed  Google Scholar 

  43. 43

    Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98, 15149–15154 (2001).

    CAS  PubMed  Google Scholar 

  44. 44

    Tamura, K. et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 67, 5117–5125 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Taylor, B.S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    PubMed  Google Scholar 

  47. 47

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Qin, Z.S. et al. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-seq data. BMC Bioinformatics 11, 369 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Saldanha, A.J. Java Treeview--extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    CAS  Google Scholar 

  53. 53

    Bailey, T.L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank A. Poliakov, J. Siddiqui and S. Shukla for helpful discussions; B. Malik, S. Subramanian, K. Wilder-Romans, S. Yazdani and V.L. Dommeti for technical assistance; K. Giles and C. Betts for critically looking over the manuscript and the submission of documents; the University of Michigan Viral Vector Core for generating the lentiviral constructs and Microscopy and Image-analysis Laboratory (MIL) for help with immunofluorescence microscopy. We thank C. Sawyers (Memorial Sloan-Kettering Cancer Center) for the LNCaP-AR cell line. This work was supported in part by the US National Institutes of Health (NIH) Prostate Specialized Program of Research Excellence grant (P50CA186786) and the Early Detection Research Network grant (UO1 CA111275) to A.M.C. A.M.C. is supported by the Prostate Cancer Foundation and the Howard Hughes Medical Institute. A.M.C. is an American Cancer Society Research Professor and a Taubman Scholar of the University of Michigan. J.G. is supported by the NIH R01 grant (1R01CA160467) and The Leukemia & Lymphoma Society Translational Research Program grant (6116-12). T.C. is supported by the American Cancer Society Research Scholar grant (RSG-11-082-01-DMC). A.N. is supported by US NIH grant R01-GM-094231. R.M is supported by a Department of Defense post-doctoral award (W81XWH-13-1-0284). R.M., I.A.A. and M.C. are supported by a Prostate Cancer Foundation Young Investigator award.

Author information




R.M., A.P.K. and A.M.C. conceived and designed the research. R.M. performed most experiments with the help of A.P.K., I.A.A., J.R.P., X. Jiang, X.W., Y.Q. and P.M.K. R.M. and X.W. carried out in vitro interaction studies. X. Jing performed microarray and M.C. analyzed the data. M.K.I. analyzed ChIP-seq data. M.K.I. and Y.S.N. performed gene expression analysis. J.E.-W., R.S. and F.Y.F. performed mouse xenograft studies. Y.-M.W. generated ChIP-seq libraries and X.C. performed the sequencing. N.P. and L.P.K. performed IHC. A.I.N., A.K.Y. and D.M. assisted with data analysis. D.B., J.G. and T.C. provided inhibitors. R.M. and A.M.C. wrote the manuscript with help from S.M.D., I.A.A. and A.P.K. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Arul M Chinnaiyan.

Ethics declarations

Competing interests

A provisional patent application (US application number PCT/US14/22750) has been filed by The University of Michigan on the use of menin inhibitors described in this study. J.G., D.B. and T.C. are named as co-inventors.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 4220 kb)

Supplementary Table 1

Genes closest to AR induced ASH2L peaks (XLS 36 kb)

Supplementary Table 2

List of Antibodies used (XLS 25 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malik, R., Khan, A., Asangani, I. et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat Med 21, 344–352 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing