Abstract
Type 2 diabetes (T2D) is characterized by chronic hyperglycemia resulting from a deficiency in insulin signaling, because of insulin resistance and/or defects in insulin secretion; it is also associated with increases in glucagon and endogenous glucose production (EGP)1. Gliflozins, including dapagliflozin, are a new class of approved oral antidiabetic agents that specifically inhibit sodium-glucose co-transporter 2 (SGLT2) function in the kidney2,3,4,5, thus preventing renal glucose reabsorption and increasing glycosuria in diabetic individuals while reducing hyperglycemia. However, gliflozin treatment in subjects with T2D increases both plasma glucagon and EGP6,7 by unknown mechanisms. In spite of the rise in EGP, T2D patients treated with gliflozin have lower blood glucose levels than those receiving placebo, possibly because of increased glycosuria6,7; however, the resulting increase in plasma glucagon levels represents a possible concerning side effect, especially in a patient population already affected by hyperglucagonemia. Here we demonstrate that SGLT2 is expressed in glucagon-secreting alpha cells of the pancreatic islets. We further found that expression of SLC5A2 (which encodes SGLT2) was lower and glucagon (GCG) gene expression was higher in islets from T2D individuals and in normal islets exposed to chronic hyperglycemia than in islets from non-diabetics. Moreover, hepatocyte nuclear factor 4-α (HNF4A) is specifically expressed in human alpha cells, in which it controls SLC5A2 expression, and its expression is downregulated by hyperglycemia. In addition, inhibition of either SLC5A2 via siRNA-induced gene silencing or SGLT2 via dapagliflozin treatment in human islets triggered glucagon secretion through KATP channel activation. Finally, we found that dapagliflozin treatment further promotes glucagon secretion and hepatic gluconeogenesis in healthy mice, thereby limiting the decrease of plasma glucose induced by fasting. Collectively, these results identify a heretofore unknown role of SGLT2 and designate dapagliflozin an alpha cell secretagogue.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Effects of SGLT-2 inhibitors on adipose tissue distribution in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials
Diabetology & Metabolic Syndrome Open Access 31 May 2023
-
Empagliflozin suppressed cardiac fibrogenesis through sodium-hydrogen exchanger inhibition and modulation of the calcium homeostasis
Cardiovascular Diabetology Open Access 06 February 2023
-
Sex-dependent effects of canagliflozin and dapagliflozin on hemostasis in normoglycemic and hyperglycemic mice
Scientific Reports Open Access 17 January 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Kahn, S.E., Cooper, M.E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383, 1068–1083 (2014).
Demaris, K.M. & White, J.R. Dapagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes. Drugs Today (Barc) 49, 289–301 (2013).
Jabbour, S.A. & Goldstein, B.J. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes. Int. J. Clin. Pract. 62, 1279–1284 (2008).
Komoroski, B. et al. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin. Pharmacol. Ther. 85, 513–519 (2009).
Nair, S. & Wilding, J.P. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J. Clin. Endocrinol. Metab. 95, 34–42 (2010).
Merovci, A. et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Invest. 124, 509–514 (2014).
Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124, 499–508 (2014).
Biddinger, S.B. & Kahn, C.R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68, 123–158 (2006).
DeFronzo, R.A., Simonson, D. & Ferrannini, E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia 23, 313–319 (1982).
Campbell, P.J., Mandarino, L.J. & Gerich, J.E. Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Metabolism 37, 15–21 (1988).
Consoli, A. Role of liver in pathophysiology of NIDDM. Diabetes Care 15, 430–441 (1992).
Dinneen, S., Alzaid, A., Turk, D. & Rizza, R. Failure of glucagon suppression contributes to postprandial hyperglycaemia in IDDM. Diabetologia 38, 337–343 (1995).
Baron, A.D., Schaeffer, L., Shragg, P. & Kolterman, O.G. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 36, 274–283 (1987).
Unger, R.H., Aguilar-Parada, E., Muller, W.A. & Eisentraut, A.M. Studies of pancreatic alpha cell function in normal and diabetic subjects. J. Clin. Invest. 49, 837–848 (1970).
Alford, F.P. et al. Glucagon control of fasting glucose in man. Lancet 2, 974–977 (1974).
Gargani, S. et al. Adaptive changes of human islets to an obesogenic environment in the mouse. Diabetologia 56, 350–358 (2013).
Yi, P., Park, J.S. & Melton, D.A. Betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell 153, 747–758 (2013).
Stoffel, M. & Duncan, S.A. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc. Natl. Acad. Sci. USA 94, 13209–13214 (1997).
Rhee, J. et al. Regulation of hepatic fasting response by PPARgamma coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc. Natl. Acad. Sci. USA 100, 4012–4017 (2003).
Love-Gregory, L.D. et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4α gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an Ashkenazi Jewish population. Diabetes 53, 1134–1140 (2004).
Weedon, M.N. et al. Common variants of the hepatocyte nuclear factor-4α P2 promoter are associated with type 2 diabetes in the U.K. population. Diabetes 53, 3002–3006 (2004).
Han, S. et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57, 1723–1729 (2008).
Leibiger, B. et al. Glucagon regulates its own synthesis by autocrine signaling. Proc. Natl. Acad. Sci. USA 109, 20925–20930 (2012).
Gylfe, E. & Gilon, P. Glucose regulation of glucagon secretion. Diabetes Res. Clin. Pract. 103, 1–10 (2014).
Zhang, Q. et al. Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metab. 18, 871–882 (2013).
Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34, 121–138 (2013).
Fujimori, Y. et al. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther. 327, 268–276 (2008).
Jurczak, M.J. et al. SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function. Diabetes 60, 890–898 (2011).
Kojima, N., Williams, J.M., Takahashi, T., Miyata, N. & Roman, R.J. Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J. Pharmacol. Exp. Ther. 345, 464–472 (2013).
Powell, D.R. et al. Improved glycemic control in mice lacking Sglt1 and Sglt2. Am. J. Physiol. Endocrinol. Metab. 304, E117–E130 (2013).
Tahara, A. et al. Antidiabetic effects of SGLT2-selective inhibitor ipragliflozin in streptozotocin-nicotinamide-induced mildly diabetic mice. J. Pharmacol. Sci. 120, 36–44 (2012).
Suzuki, M. et al. Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice. J. Pharmacol. Exp. Ther. 341, 692–701 (2012).
Liang, Y. et al. Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PLoS ONE 7, e30555 (2012).
Luippold, G., Klein, T., Mark, M. & Grempler, R. Empagliflozin, a novel potent and selective SGLT-2 inhibitor, improves glycaemic control alone and in combination with insulin in streptozotocin-induced diabetic rats, a model of type 1 diabetes mellitus. Diabetes Obes. Metab. 14, 601–607 (2012).
Yamaguchi, K. et al. In vitro-in vivo correlation of the inhibition potency of sodium-glucose cotransporter inhibitors in rat: a pharmacokinetic and pharmacodynamic modeling approach. J. Pharmacol. Exp. Ther. 345, 52–61 (2013).
Devenny, J.J. et al. Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity (Silver Spring) 20, 1645–1652 (2012).
Nagata, T. et al. Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo- or euglycemic conditions in rats. Am. J. Physiol. Endocrinol. Metab. 304, E414–E423 (2013).
Cryer, P.E., Davis, S.N. & Shamoon, H. Hypoglycemia in diabetes. Diabetes Care 26, 1902–1912 (2003).
DeFronzo, R.A., Ferrannini, E. & Simonson, D.C. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 38, 387–395 (1989).
Jurysta, C. et al. Glucose transport by acinar cells in rat parotid glands. Cell. Physiol. Biochem. 29, 325–330 (2012).
Magen, D., Sprecher, E., Zelikovic, I. & Skorecki, K. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria. Kidney Int. 67, 34–41 (2005).
Kerr-Conte, J. et al. Upgrading pretransplant human islet culture technology requires human serum combined with media renewal. Transplantation 89, 1154–1160 (2010).
Dorrell, C. et al. Transcriptomes of the major human pancreatic cell types. Diabetologia 54, 2832–2844 (2011).
Lukowiak, B. et al. Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe. J. Histochem. Cytochem. 49, 519–528 (2001).
Schulthess, F.T. et al. CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling. Cell Metab. 9, 125–139 (2009).
Lefebvre, B. et al. Efficient gene delivery and silencing of mouse and human pancreatic islets. BMC Biotechnol. 10, 28 (2010).
Obermeier, M. et al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab. Dispos. 38, 405–414 (2010).
Cheng-Xue, R. et al. Tolbutamide controls glucagon release from mouse islets differently than glucose: involvement of K(ATP) channels from both alpha-cells and delta-cells. Diabetes 62, 1612–1622 (2013).
Abderrahmani, A. et al. Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia 50, 1304–1314 (2007).
de Jonge, H.J. et al. Evidence based selection of housekeeping genes. PLoS ONE 2, e898 (2007).
Acknowledgements
We thank the Agence de la Biomedecine and Lille University core facilities for biotherapy, experimental research, and histology; R. Boutry for excellent technical assistance; and L. Schäffer (Novo Nordisk, Bagsvaerd, Denmark) for providing the S961 insulin receptor antagonist. We are grateful to J. Girard (Institut Cochin, Paris, France) and J.-C. Henquin (Université de Louvain, Brussels, Belgium) for their comments and stimulating discussions. This work was presented in part at the 2014 annual meetings of the American Diabetes Association and the European Association to Study Diabetes. This work was supported by grants from the Conseil Régional Nord-Pas-de-Calais and the European Commission (FEDER 12003944 to F.P.), the Fondation de l'Avenir (Matmut Award to F.P.), and the European Genomic Institute for Diabetes (ANR-10-LABX-46 to F.P.). The European Consortium for Islet Transplantation is funded by the Juvenile Diabetes Research Foundation International. B.S. is a member of the Institut Universitaire de France. International.
Author information
Authors and Affiliations
Contributions
C. Bonner designed and performed experiments, analyzed the data, and wrote the manuscript. I.P., A.S. and W.J.M. conceived some experiments. V.G., G.Q., E.M., J.T., N.D., C. Beaucamps and B.D. performed specific experiments. J.K.-C. and A.A. participated in experimental design, analyzed data and wrote the manuscript. F.P. and B.S. supervised the project and wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–5 (PDF 11279 kb)
Rights and permissions
About this article
Cite this article
Bonner, C., Kerr-Conte, J., Gmyr, V. et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med 21, 512–517 (2015). https://doi.org/10.1038/nm.3828
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nm.3828
This article is cited by
-
Effects of SGLT-2 inhibitors on adipose tissue distribution in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials
Diabetology & Metabolic Syndrome (2023)
-
Empagliflozin suppressed cardiac fibrogenesis through sodium-hydrogen exchanger inhibition and modulation of the calcium homeostasis
Cardiovascular Diabetology (2023)
-
Sex-dependent effects of canagliflozin and dapagliflozin on hemostasis in normoglycemic and hyperglycemic mice
Scientific Reports (2023)
-
Ketones: the double-edged sword of SGLT2 inhibitors?
Diabetologia (2023)
-
Empagliflozin improves cardiac function in rats with chronic heart failure
Naunyn-Schmiedeberg's Archives of Pharmacology (2023)