Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo

Abstract

Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. However, the mechanisms behind these effects are unclear. Here we show that nicotine, a major constituent of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which in turn phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating its proteasome-dependent degradation. The nicotine-dependent reduction of MKP1 induces the aberrant activation of both p38 mitogen–activated protein kinase and c-Jun N-terminal kinase, leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to its degradation, protein kinase B inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results establish AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nicotine (Nic) perfusion induces IR and lowers adiposity.
Figure 2: Inhibition of lipolysis blocks nicotine-induced IR and adiposity reduction.
Figure 3: Deletion of Ampkα2, but not Ampkα1, blocks nicotine-induced IR and inhibition of weight gain in mice.
Figure 4: Adipose Ampkα2 is required for the nicotine-dependent inhibitory effects on weight gain and insulin signaling in mice.
Figure 5: Nicotine treatment results in greater pMkp1-Ser334 levels and subsequent degradation through Ampk.
Figure 6: MKP1 reduction is required for nicotine-mediated IR and lipolysis.

Similar content being viewed by others

References

  1. Dubé, J.J. et al. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54, 1147–1156 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. Iribarren, C., Tekawa, I.S., Sidney, S. & Friedman, G.D. Effect of cigar smoking on the risk of cardiovascular disease, chronic obstructive pulmonary disease, and cancer in men. N. Engl. J. Med. 340, 1773–1780 (1999).

    CAS  PubMed  Google Scholar 

  3. Eliasson, B., Taskinen, M.R. & Smith, U. Long-term use of nicotine gum is associated with hyperinsulinemia and insulin resistance. Circulation 94, 878–881 (1996).

    CAS  PubMed  Google Scholar 

  4. Wack, J.T. & Rodin, J. Smoking and its effects on body weight and the systems of caloric regulation. Am. J. Clin. Nutr. 35, 366–380 (1982).

    CAS  PubMed  Google Scholar 

  5. Flegal, K.M., Troiano, R.P., Pamuk, E.R., Kuczmarski, R.J. & Campbell, S.M. The influence of smoking cessation on the prevalence of overweight in the United-States. N. Engl. J. Med. 333, 1165–1170 (1995).

    CAS  PubMed  Google Scholar 

  6. Williamson, D.F. et al. Smoking cessation and severity of weight-gain in a national cohort. N. Engl. J. Med. 324, 739–745 (1991).

    CAS  PubMed  Google Scholar 

  7. Schnoll, R.A., Goren, A., Annunziata, K. & Suaya, J.A. The prevalence, predictors and associated health outcomes of high nicotine dependence using three measures among US smokers. Addiction 108, 1989–2000 (2013).

    PubMed  Google Scholar 

  8. Johnson, G.L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912 (2002).

    CAS  PubMed  Google Scholar 

  9. Rotter, V., Nagaev, I. & Smith, U. Interleukin-6 (IL-6) induces insulin resistance in 3T3–L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 278, 45777–45784 (2003).

    CAS  PubMed  Google Scholar 

  10. Hiratani, K. et al. Roles of mTOR and JNK in serine phosphorylation, translocation, and degradation of IRS-1. Biochem. Biophys. Res. Commun. 335, 836–842 (2005).

    CAS  PubMed  Google Scholar 

  11. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    CAS  PubMed  Google Scholar 

  12. Bennett, B.L., Satoh, Y. & Lewis, A.J. JNK: a new therapeutic target for diabetes. Curr. Opin. Pharmacol. 3, 420–425 (2003).

    CAS  PubMed  Google Scholar 

  13. Fernández-Galilea, M., Perez-Matute, P., Prieto-Hontoria, P.L., Martinez, J.A. & Moreno-Aliaga, M.J. Effects of lipoic acid on lipolysis in 3T3–L1 adipocytes. J. Lipid Res. 53, 2296–2306 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. Heusch, W.L. & Maneckjee, R. Signalling pathways involved in nicotine regulation of apoptosis of human lung cancer cells. Carcinogenesis 19, 551–556 (1998).

    CAS  PubMed  Google Scholar 

  15. Nakamura, S. et al. Nicotine induces upregulated expression of beta defensin-2 via the p38MAPK pathway in the HaCaT human keratinocyte cell line. Med. Mol. Morphol. 43, 204–210 (2010).

    CAS  PubMed  Google Scholar 

  16. Li, J.M. et al. Nicotine enhances angiotensin II-induced mitogenic response in vascular smooth muscle cells and fibroblasts. Arterioscler. Thromb. Vasc. Biol. 24, 80–84 (2004).

    PubMed  Google Scholar 

  17. Salminen, A., Hyttinen, J.M. & Kaarniranta, K. AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan. J. Mol. Med. 89, 667–676 (2011).

    CAS  PubMed  Google Scholar 

  18. Steinberg, G.R. & Kemp, B.E. AMPK in health and disease. Physiol. Rev. 89, 1025–1078 (2009).

    CAS  PubMed  Google Scholar 

  19. An, Z.B. et al. Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes—a role for oxidant stress. J. Biol. Chem. 282, 26793–26801 (2007).

    CAS  PubMed  Google Scholar 

  20. Wang, S. et al. Activation of AMP-activated protein kinase alpha2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat. Med. 18, 902–910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Martínez de Morentin, P.B. et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes 61, 807–817 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Benowitz, N.L. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog. Cardiovasc. Dis. 46, 91–111 (2003).

    CAS  PubMed  Google Scholar 

  23. Tundulawessa, Y., Yongchaiyud, P., Chutrthong, W. & Tundulawessa, K. The bioequivalent and effect of nicotine formulation gum on smoking cessation. J. Med. Assoc. Thailand (Chotmaihet thangphaet) 93, 574–579 (2010).

    Google Scholar 

  24. Jocken, J.W. et al. Insulin-mediated suppression of lipolysis in adipose tissue and skeletal muscle of obese type 2 diabetic men and men with normal glucose tolerance. Diabetologia 56, 2255–2265 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mineur, Y.S. et al. Nicotine decreases food intake through activation of POMC neurons. Science 332, 1330–1332 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pal, D. et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285 (2012).

    CAS  PubMed  Google Scholar 

  27. Liew, C.W. et al. Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance. Nat. Med. 19, 217–226 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo, W. et al. Acipimox, an inhibitor of lipolysis, attenuates atherogenesis in LDLR-null mice treated with HIV protease inhibitor ritonavir. Arterioscler. Thromb. Vasc. Biol. 29, 2028–2032 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hardie, D.G., Ross, F.A. & Hawley, S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fullerton, M.D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruderman, N.B., Carling, D., Prentki, M. & Cacicedo, J.M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest. 123, 2764–2772 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Musi, N. et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 50, 921–927 (2001).

    CAS  PubMed  Google Scholar 

  33. Garton, A.J. et al. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur. J Biochemistry 179, 249–254 (1989).

    CAS  Google Scholar 

  34. Daval, M. et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J. Biol. Chem. 280, 25250–25257 (2005).

    CAS  PubMed  Google Scholar 

  35. Bourron, O. et al. Biguanides and thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of AMP-activated protein kinase. Diabetologia 53, 768–778 (2010).

    CAS  PubMed  Google Scholar 

  36. Djouder, N. et al. PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J. 29, 469–481 (2010).

    CAS  PubMed  Google Scholar 

  37. Ahmadian, M. et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739–748 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, L. et al. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am. J. Physiol. Endocrinol. Metab. 302, E1550–E1559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Um, S.H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    CAS  PubMed  Google Scholar 

  40. Horike, N. et al. Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J. Biol. Chem. 278, 18440–18447 (2003).

    CAS  PubMed  Google Scholar 

  41. Sánchez-Tillo, E. et al. JNK1 Is required for the induction of Mkp1 expression in macrophages during proliferation and lipopolysaccharide-dependent activation. J. Biol. Chem. 282, 12566–12573 (2007).

    PubMed  Google Scholar 

  42. Brondello, J.M., Pouyssegur, J. & McKenzie, F.R. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286, 2514–2517 (1999).

    CAS  PubMed  Google Scholar 

  43. Wu, J.J. et al. Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab. 4, 61–73 (2006).

    CAS  PubMed  Google Scholar 

  44. Zhong, C., Talmage, D.A. & Role, L.W. Nicotine elicits prolonged calcium signaling along ventral hippocampal axons. PLoS ONE 8, e82719 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Hogg, R.C. & Bertrand, D. Neuroscience. What genes tell us about nicotine addiction. Science 306, 983–985 (2004).

    CAS  PubMed  Google Scholar 

  46. Friedman, T.C. et al. Additive effects of nicotine and high-fat diet on hepatic steatosis in male mice. Endocrinology 153, 5809–5820 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Seoane-Collazo, P. et al. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats. Endocrinology 155, 1679–1689 (2014).

    PubMed  Google Scholar 

  48. Xu, T.Y. et al. Chronic exposure to nicotine enhances insulin sensitivity through alpha 7 nicotinic acetylcholine receptor-STAT3 pathway. PLoS ONE 7, e51217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoon, M.J. et al. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55, 2562–2570 (2006).

    CAS  PubMed  Google Scholar 

  50. Lin, Y.W. & Yang, J.L. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J. Biol. Chem. 281, 915–926 (2006).

    CAS  PubMed  Google Scholar 

  51. Choi, S.M. et al. Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Mol. Cell. Biol. 30, 5009–5020 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Villena, J.A. et al. Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-alpha2 subunit. Diabetes 53, 2242–2249 (2004).

    CAS  PubMed  Google Scholar 

  53. Bolinder, J., Sjoberg, S. & Arner, P. Stimulation of adipose tissue lipolysis following insulin-induced hypoglycaemia: evidence of increased beta-adrenoceptor-mediated lipolytic response in IDDM. Diabetologia 39, 845–853 (1996).

    CAS  PubMed  Google Scholar 

  54. Wolffenbuttel, B.H., Weber, R.F., van Koetsveld, P.M., Weeks, L. & Verschoor, L. A randomized crossover study of sulphonylurea and insulin treatment in patients with type 2 diabetes poorly controlled on dietary therapy. Diabet. Med. 6, 520–525 (1989).

    CAS  PubMed  Google Scholar 

  55. Gabrielsson, J. & Bondesson, U. Constant-rate infusion of nicotine and cotinine. I. A physiological pharmacokinetic analysis of the cotinine disposition, and effects on clearance and distribution in the rat. J. Pharmacokinet. Biopharm. 15, 583–599 (1987).

    CAS  PubMed  Google Scholar 

  56. Song, P. et al. Adenosine monophosphate-activated protein kinase-alpha2 deficiency promotes vascular smooth muscle cell migration via S-phase kinase-associated protein 2 upregulation and E-cadherin downregulation. Arterioscler. Thromb. Vasc. Biol. 33, 2800–2809 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dorfman, K. et al. Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene 13, 925–931 (1996).

    CAS  PubMed  Google Scholar 

  58. Blättler, S.M. et al. Yin Yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling. Cell Metab. 15, 505–517 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Turner, N. et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 56, 1638–1648 (2013).

    CAS  PubMed  Google Scholar 

  60. Li, P. et al. Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity. Cell 147, 815–826 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, W., Wang, Q., Song, P. & Zou, M.H. Liver kinase b1 is required for white adipose tissue growth and differentiation. Diabetes 62, 2347–2358 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Targher, G. et al. Cigarette smoking and insulin resistance in patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 82, 3619–3624 (1997).

    CAS  PubMed  Google Scholar 

  63. Coburn, C.T. et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275, 32523–32529 (2000).

    CAS  PubMed  Google Scholar 

  64. Siri, P. et al. Post-transcriptional stimulation of the assembly and secretion of triglyceride-rich apolipoprotein B lipoproteins in a mouse with selective deficiency of brown adipose tissue, obesity, and insulin resistance. J. Biol. Chem. 276, 46064–46072 (2001).

    CAS  PubMed  Google Scholar 

  65. Wang, S., Song, P. & Zou, M.H. Inhibition of AMP-activated protein kinase alpha (AMPKα) by doxorubicin accentuates genotoxic stress and cell death in mouse embryonic fibroblasts and cardiomyocytes: role of p53 and SIRT1. J. Biol. Chem. 287, 8001–8012 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Xie, Z.L. et al. Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol. Cell. Biol. 29, 3582–3596 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Yu for helpful discussions and D. Wang and Y. Du for technical support. Prkaa1flox/flox and Prkaa2flox/flox mice were provided by B. Viollet (INSERM, U1016, Institut Cochin, Paris, France). This study was supported by grants from the US National Institutes of Health (HL079584, HL080499, HL074399, HL089920, HL096032, HL105157, HL110488, and AG047776 to M.-H.Z.) and (HL128014 to Z.X.). This study was also supported in part by grants from the National Natural Science Foundation of China (81100209, 81025002 and 91339116 to Z.Y. and 81270355 to J.W.), the Scientist Development Grant of American Heart Association (11SDG5560036 to P.S.), and the Oklahoma Center for the Advancement of Science and Technology (HR12-061 to P.S.).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. designed and performed the experiments, analyzed data, and drafted the manuscript. P.S., W.Z., X.D., Z.L., C.O., Z.X. and X.Z. performed a part of the animal experiments. J.L. and Z.Y. performed the human experiments. Z.Z. and J.W. partially performed the in vitro experiments, W.Z. and Q.L. generated series mutants. B.V. and M.F. provided the Ampk knockout mice. M.-H.Z. conceived the projects, designed the experiments, analyzed data, and wrote the manuscript.

Corresponding authors

Correspondence to Zuyi Yuan or Ming-Hui Zou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures and text

Supplementary Figures 1–8 and Supplementary Tables 1–3 (PDF 1663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Song, P., Zhang, W. et al. Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med 21, 373–382 (2015). https://doi.org/10.1038/nm.3826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3826

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing