Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myocardial healing requires Reg3β-dependent accumulation of macrophages in the ischemic heart

Abstract

Cardiac healing after myocardial ischemia depends on the recruitment and local expansion of myeloid cells, particularly macrophages. Here we identify Reg3β as an essential regulator of macrophage trafficking to the damaged heart. Using mass spectrometry–based secretome analysis, we found that dedifferentiating cardiomyocytes release Reg3β in response to the cytokine OSM, which signals through Jak1 and Stat3. Loss of Reg3β led to a large decrease in the number of macrophages in the ischemic heart, accompanied by increased ventricular dilatation and insufficient removal of neutrophils. This defect in neutrophil removal in turn caused enhanced matrix degradation, delayed collagen deposition and increased susceptibility to cardiac rupture. Our data indicate that OSM, acting through distinct intracellular pathways, regulates both cardiomyocyte dedifferentiation and cardiomyocyte-dependent regulation of macrophage trafficking. Release of OSM from infiltrating neutrophils and macrophages initiates a positive feedback loop in which OSM-induced production of Reg3β in cardiomyocytes attracts additional OSM-secreting macrophages. The activity of the feedback loop controls the degree of macrophage accumulation in the heart, which is instrumental in myocardial healing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic inactivation of OSMR reduces the accumulation of leukocytes in the damaged heart after MI.
Figure 2: OSM stimulates the expression and secretion of Reg proteins from cardiomyocytes.
Figure 3: Upregulation of Reg3β expression in ischemic hearts depends on activation of the OSMR–Jak1–Stat3 pathway.
Figure 4: Reg3β exerts chemokinetic and chemotactic effects on macrophages.
Figure 5: Genetic inactivation of Reg3β prevents accumulation of macrophages in the heart after MI.
Figure 6: Inactivation of Reg3β prevents cardiac healing after MI, leading to decreased survival, impaired cardiac function and disturbed scar formation.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

References

  1. Frangogiannis, N.G., Smith, C.W. & Entman, M.L. The inflammatory response in myocardial infarction. Cardiovasc. Res. 53, 31–47 (2002).

    CAS  PubMed  Google Scholar 

  2. Frangogiannis, N.G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 110, 159–173 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lambert, J.M., Lopez, E.F. & Lindsey, M.L. Macrophage roles following myocardial infarction. Int. J. Cardiol. 130, 147–158 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. Biasucci, L.M. et al. Elevated levels of interleukin-6 in unstable angina. Circulation 94, 874–877 (1996).

    CAS  PubMed  Google Scholar 

  5. Fisman, E.Z. et al. Interleukin-6 and the risk of future cardiovascular events in patients with angina pectoris and/or healed myocardial infarction. Am. J. Cardiol. 98, 14–18 (2006).

    CAS  PubMed  Google Scholar 

  6. Frangogiannis, N.G. The immune system and cardiac repair. Pharmacol. Res. 58, 88–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dobaczewski, M., Gonzalez-Quesada, C. & Frangogiannis, N.G. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell. Cardiol. 48, 504–511 (2010).

    CAS  PubMed  Google Scholar 

  9. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. van Amerongen, M.J., Harmsen, M.C., van Rooijen, N., Petersen, A.H. & van Luyn, M.J. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol. 170, 818–829 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Irwin, M.W. et al. Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation 99, 1492–1498 (1999).

    CAS  PubMed  Google Scholar 

  12. Iversen, P.O., Nicolaysen, G. & Sioud, M. DNA enzyme targeting TNF-alpha mRNA improves hemodynamic performance in rats with postinfarction heart failure. Am. J. Physiol. Heart Circ. Physiol. 281, H2211–H2217 (2001).

    CAS  PubMed  Google Scholar 

  13. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Baggiolini, M. Chemokines and leukocyte traffic. Nature 392, 565–568 (1998).

    CAS  PubMed  Google Scholar 

  15. Frangogiannis, N.G. Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm. Res. 53, 585–595 (2004).

    CAS  PubMed  Google Scholar 

  16. Frangogiannis, N.G. The role of the chemokines in myocardial ischemia and reperfusion. Curr. Vasc. Pharmacol. 2, 163–174 (2004).

    CAS  PubMed  Google Scholar 

  17. Dobaczewski, M. & Frangogiannis, N.G. Chemokines in myocardial infarction: translating basic research into clinical medicine. Future Cardiol. 4, 347–351 (2008).

    PubMed  Google Scholar 

  18. Grenier, A. et al. Oncostatin M production and regulation by human polymorphonuclear neutrophils. Blood 93, 1413–1421 (1999).

    CAS  PubMed  Google Scholar 

  19. Radka, S.F., Nakamura, S., Sakurada, S. & Salahuddin, S.Z. Correlation of oncostatin M secretion by human retrovirus-infected cells with potent growth stimulation of cultured spindle cells from AIDS-Kaposi's sarcoma. J. Immunol. 150, 5195–5201 (1993).

    CAS  PubMed  Google Scholar 

  20. Brown, T.J., Lioubin, M.N. & Marquardt, H. Purification and characterization of cytostatic lymphokines produced by activated human T lymphocytes. Synergistic antiproliferative activity of transforming growth factor beta 1, interferon-gamma, and oncostatin M for human melanoma cells. J. Immunol. 139, 2977–2983 (1987).

    CAS  PubMed  Google Scholar 

  21. Kubin, T. et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9, 420–432 (2011).

    CAS  PubMed  Google Scholar 

  22. Watanabe, R. et al. Gene expression profiles of cardiomyocytes in rat autoimmune myocarditis by DNA microarray and increase of regenerating gene family. Transl. Res. 152, 119–127 (2008).

    CAS  PubMed  Google Scholar 

  23. Closa, D., Motoo, Y. & Iovanna, J.L. Pancreatitis-associated protein: from a lectin to an anti-inflammatory cytokine. World J. Gastroenterol. 13, 170–174 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilkinson, P.C. Cell locomotion and chemotaxis: basic concepts and methodological approaches. Methods 10, 74–81 (1996).

    CAS  PubMed  Google Scholar 

  25. Gouwy, M. et al. Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events. Mol. Pharmacol. 74, 485–495 (2008).

    CAS  PubMed  Google Scholar 

  26. Mortier, A., Van Damme, J. & Proost, P. Overview of the mechanisms regulating chemokine activity and availability. Immunol. Lett. 145, 2–9 (2012).

    CAS  PubMed  Google Scholar 

  27. Benigni, F. et al. Six different cytokines that share GP130 as a receptor subunit, induce serum amyloid A and potentiate the induction of interleukin-6 and the activation of the hypothalamus-pituitary-adrenal axis by interleukin-1. Blood 87, 1851–1854 (1996).

    CAS  PubMed  Google Scholar 

  28. Hintzen, C., Haan, C., Tuckermann, J.P., Heinrich, P.C. & Hermanns, H.M. Oncostatin M-induced and constitutive activation of the JAK2/STAT5/CIS pathway suppresses CCL1, but not CCL7 and CCL8, chemokine expression. J. Immunol. 181, 7341–7349 (2008).

    CAS  PubMed  Google Scholar 

  29. Kiji, T. et al. Activation of regenerating gene Reg in rat and human hearts in response to acute stress. Am. J. Physiol. Heart Circ. Physiol. 289, H277–H284 (2005).

    CAS  PubMed  Google Scholar 

  30. Iovanna, J., Orelle, B., Keim, V. & Dagorn, J.C. Messenger RNA sequence and expression of rat pancreatitis-associated protein, a lectin-related protein overexpressed during acute experimental pancreatitis. J. Biol. Chem. 266, 24664–24669 (1991).

    CAS  PubMed  Google Scholar 

  31. Lai, Y. et al. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 37, 74–84 (2012).

    CAS  PubMed  Google Scholar 

  32. Nishimune, H. et al. Reg-2 is a motoneuron neurotrophic factor and a signalling intermediate in the CNTF survival pathway. Nat. Cell Biol. 2, 906–914 (2000).

    CAS  PubMed  Google Scholar 

  33. Livesey, F.J. et al. A Schwann cell mitogen accompanying regeneration of motor neurons. Nature 390, 614–618 (1997).

    CAS  PubMed  Google Scholar 

  34. Namikawa, K., Okamoto, T., Suzuki, A., Konishi, H. & Kiyama, H. Pancreatitis-associated protein-III is a novel macrophage chemoattractant implicated in nerve regeneration. J. Neurosci. 26, 7460–7467 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Deten, A., Volz, H.C., Briest, W. & Zimmer, H.G. Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc. Res. 55, 329–340 (2002).

    CAS  PubMed  Google Scholar 

  36. Zidar, N., Jeruc, J., Balazic, J. & Stajer, D. Neutrophils in human myocardial infarction with rupture of the free wall. Cardiovasc. Pathol. 14, 247–250 (2005).

    CAS  PubMed  Google Scholar 

  37. Cox, G., Crossley, J. & Xing, Z. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am. J. Respir. Cell Mol. Biol. 12, 232–237 (1995).

    CAS  PubMed  Google Scholar 

  38. Goren, I. et al. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am. J. Pathol. 175, 132–147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gordy, C., Pua, H., Sempowski, G.D. & He, Y.W. Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117, 618–629 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hilfiker-Kleiner, D. et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ. Res. 95, 187–195 (2004).

    CAS  PubMed  Google Scholar 

  41. Oshima, Y. et al. STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc. Res. 65, 428–435 (2005).

    CAS  PubMed  Google Scholar 

  42. Haghikia, A., Stapel, B., Hoch, M. & Hilfiker-Kleiner, D. STAT3 and cardiac remodeling. Heart Fail. Rev. 16, 35–47 (2011).

    CAS  PubMed  Google Scholar 

  43. Stross, C. et al. Oncostatin M receptor-mediated signal transduction is negatively regulated by SOCS3 through a receptor tyrosine-independent mechanism. J. Biol. Chem. 281, 8458–8468 (2006).

    CAS  PubMed  Google Scholar 

  44. Chattopadhyay, S. et al. Interleukin-31 and oncostatin-M mediate distinct signaling reactions and response patterns in lung epithelial cells. J. Biol. Chem. 282, 3014–3026 (2007).

    CAS  PubMed  Google Scholar 

  45. Kosmala, W., Przewlocka-Kosmala, M. & Mazurek, W. Proinflammatory cytokines and myocardial viability in patients after acute myocardial infarction. Int. J. Cardiol. 101, 449–456 (2005).

    PubMed  Google Scholar 

  46. Jiang, B. & Liao, R. The paradoxical role of inflammation in cardiac repair and regeneration. J. Cardiovasc. Transl. Res. 3, 410–416 (2010).

    PubMed  Google Scholar 

  47. Kempf, T., Zarbock, A., Vestweber, D. & Wollert, K.C. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. J. Mol. Med. (Berl.) 90, 361–369 (2012).

    Google Scholar 

  48. Tanaka, M. et al. Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood 102, 3154–3162 (2003).

    CAS  PubMed  Google Scholar 

  49. Lieu, H.T. et al. Reg2 inactivation increases sensitivity to Fas hepatotoxicity and delays liver regeneration post-hepatectomy in mice. Hepatology 44, 1452–1464 (2006).

    CAS  PubMed  Google Scholar 

  50. Ebelt, H. et al. Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines. Stem Cells 25, 236–244 (2007).

    CAS  PubMed  Google Scholar 

  51. Larson, A.C. et al. Self-gated cardiac cine MRI. Magn. Reson. Med. 51, 93–102 (2004).

    PubMed  PubMed Central  Google Scholar 

  52. Kubin, T. et al. Porcine aortic endothelial cells show little effects on smooth muscle cells but are potent stimulators of cardiomyocyte growth. Mol. Cell. Biochem. 242, 39–45 (2003).

    CAS  PubMed  Google Scholar 

  53. Kubin, T. et al. Microvascular endothelial cells remodel cultured adult cardiomyocytes and increase their survival. Am. J. Physiol. 276, H2179–H2187 (1999).

    CAS  PubMed  Google Scholar 

  54. Tofaris, G.K., Patterson, P.H., Jessen, K.R. & Mirsky, R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J. Neurosci. 22, 6696–6703 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zamilpa, R. et al. CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 300, H1418–H1426 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Boettger, T. et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest. 119, 2634–2647 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Neuhaus, P. et al. Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Mol. Cell. Biol. 23, 6037–6048 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Elsässer, A. et al. A self-perpetuating vicious cycle of tissue damage in human hibernating myocardium. Mol. Cell. Biochem. 213, 17–28 (2000).

    PubMed  Google Scholar 

  59. Wiggins, H. & Rappoport, J. An agarose spot assay for chemotactic invasion. Biotechniques 48, 121–124 (2010).

    CAS  PubMed  Google Scholar 

  60. Virag, J.A. & Lust, R.M. Coronary artery ligation and intramyocardial injection in a murine model of infarction. J. Vis. Exp. 52, 2581 (2011).

    Google Scholar 

Download references

Acknowledgements

We thank J. Wetzel, K. Richter, B. Matzke, U. Hofmann and S. Thomas for excellent technical assistance. We are indebted to A. Miyajima (University of Tokyo, Tokyo, Japan) and S. Hunt (University College London, London, UK) for the generous gifts of OSMR-deficient and Reg3β-deficient mice, respectively. This work was supported by the Foundation Leducq, the Excellence Initiative “Cardiopulmonary System,” the Cell and Gene Therapy Center (CGT) and the German Center for Cardiovascular Research (DZHK).

Author information

Authors and Affiliations

Authors

Contributions

H.L., J.P., P.G. and T.K. conducted experiments; Y.H. carried out experimental LAD ligations; V.P. and S.K. performed immunohistological analysis; J.M.A.-S. conducted data analyses; T.B. performed Genechip-based transcriptional profiling; A.W. performed and interpreted MRI analysis; H.W. supervised the project; M.R. provided biopsies of human ischemic cardiomyopathy samples; and H.L., J.P. and T.B. developed the concept, designed experimental studies, analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Jochen Pöling or Thomas Braun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–5 (PDF 13719 kb)

Supplementary Data Set

Statistical data for Supplementary Figures (XLSX 38 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lörchner, H., Pöling, J., Gajawada, P. et al. Myocardial healing requires Reg3β-dependent accumulation of macrophages in the ischemic heart. Nat Med 21, 353–362 (2015). https://doi.org/10.1038/nm.3816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing