Abstract
Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs—preferentially of blood group A—to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Stochastic expression of invasion genes in Plasmodium falciparum schizonts
Nature Communications Open Access 30 May 2022
-
STRIDE: a command-line HMM-based identifier and sub-classifier of Plasmodium falciparum RIFIN and STEVOR variant surface antigen families
BMC Bioinformatics Open Access 06 January 2022
-
Red blood cell blood group A antigen level affects the ability of heparin and PfEMP1 antibodies to disrupt Plasmodium falciparum rosettes
Malaria Journal Open Access 18 November 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Scherf, A., Lopez-Rubio, J.J. & Riviere, L. Annu. Rev. Microbiol. 62, 445–470 (2008).
Miller, L.H., Ackerman, H.C., Su, X. & Wellems, T.E. Nat. Med. 19, 156–167 (2013).
Carlson, J. et al. Lancet 336, 1457–1460 (1990).
Rowe, A., Obeiro, J., Newbold, C.I. & Marsh, K. Infect. Immun. 63, 2323–2326 (1995).
Rowe, J.A., Moulds, J.M., Newbold, C.I. & Miller, L.H. Nature 388, 292–295 (1997).
Chen, Q. et al. J. Exp. Med. 187, 15–23 (1998).
Vigan-Womas, I. et al. PLoS Pathog. 8, e1002781 (2012).
Carlson, J., Nash, G.B., Gabutti, V., al-Yaman, F. & Wahlgren, M. Blood 84, 3909–3914 (1994).
Carlson, J. & Wahlgren, M. J. Exp. Med. 176, 1311–1317 (1992).
Rowe, J.A. et al. Proc. Natl. Acad. Sci. USA 104, 17471–17476 (2007).
Cserti, C.M. & Dzik, W.H. Blood 110, 2250–2258 (2007).
Fernandez, V. et al. J. Exp. Med. 190, 1393–1404 (1999).
Kyes, S.A. et al. Proc. Natl. Acad. Sci. USA 96, 9333–9338 (1999).
Petter, M. et al. Mol. Biochem. Parasitol. 156, 51–61 (2007).
Joannin, N., Abhiman, S., Sonnhammer, E.L. & Wahlgren, M. BMC Genomics 9, 19 (2008).
Lavazec, C., Sanyal, S. & Templeton, T.J. Nucleic Acids Res. 34, 6696–6707 (2006).
Hessa, T. et al. Nature 433, 377–381 (2005).
Liu, Q.P. et al. Nat. Biotechnol. 25, 454–464 (2007).
Chen, Q. et al. Nature 394, 392–395 (1998).
Gahmberg, C.G., Myllyla, G., Leikola, J. & Pirkola, A. J. Biol. Chem. 251, 6108–6116 (1976).
Claros, M.G. & von Heijne, G. Comput. Appl. Biosci. 10, 685–686 (1994).
Tusnády, G.E. & Simon, I. Bioinformatics 17, 849–850 (2001).
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E.L.J. Mol. Biol. 305, 567–580 (2001).
Käll, L. & Sonnhammer, E.L. FEBS Lett. 532, 415–418 (2002).
Rost, B., Fariselli, P. & Casadio, R. Protein Sci. 5, 1704–1718 (1996).
Bernsel, A., Viklund, H., Hennerdal, A. & Elofsson, A. Nucleic Acids Res. 37, W465–W468 (2009).
Arai, M. et al. Nucleic Acids Res. 32, W390–W393 (2004).
Bendtsen, J.D., Nielsen, H., von Heijne, G. & Brunak, S. J. Mol. Biol. 340, 783–795 (2004).
Mok, B.W. et al. Mol. Biochem. Parasitol. 151, 184–192 (2007).
Moll, K., Kaneko, A., Scherf, A. & Wahlgren, M. Methods in Malaria Research. 6th edn. (EviMalaR, Glasgow, UK & MR4/ATCC, Manassas, VA, USA, 2013).
Trager, W. & Jensen, J.B. Science 193, 673–675 (1976).
Angeletti, D. et al. PLoS ONE 7, e50758 (2012).
Kozak, M. Cell 44, 283–292 (1986).
Johansson, H.E., Sproat, B.S. & Melefors, Ö. Nucleic Acids Res. 21, 2275–2276 (1993).
Lundin, C. et al. FEBS Lett. 580, 2281–2284 (2006).
Angeletti, D., Albrecht, L., Wahlgren, M. & Moll, K. Malar. J. 12, 32 (2013).
Pettersson, F. et al. Infect. Immun. 73, 7736–7746 (2005).
Acknowledgements
We thank B. Dobberstein (Ruprecht-Karls-Universität, Heidelberg) for providing dog pancreas microsomes and O. Puijalon (Pasteur Institute, France) for the gift of mAb D15-50. 3-α-N-acetylgalactosaminidase (Azyme) and 3-α-galactosidase (Bzyme) were kindly provided by Henrik Clausen (Copenhagen Center for Glycomics). This study was supported by the Swedish Strategic Foundation to I.M.N. and M.W., the EU Sixth- and Seventh-Framework Programs (MEST-CT-2004-8475 and EviMalar Network of Excellence to I.M.N. and M.W.), the Swedish Research Council (VR/2012-2014/521-2011-3377 to M.W., VR/2011-2018/14251 to M.L.O.), the Söderberg Foundation and Swedish Academy of Sciences, Swedish governmental ALF grants to Lund University Healthcare to J.R.S. and M.L.O., and a Distinguished Professor Award from Karolinska Institutet to M.W. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
S.G., M.P., K.M., N.J., R.R.A., D.A., M. Westman and H.K. carried out the parasite culturing, protein expression in E. coli and S2-cells, mRNA and nucleic acid preparation, RNA-seq, PCR, plasmid construction, rosette-disruption experiments, FACS experiments, and CHO adhesion experiments, and they participated in the design of the study and writing of the manuscript. L.I. assisted with the sequestration experiments in rats. O.B., C.G.G., J.R.S., A.K.H. provided sialic acid-, Azyme- and Bzyme-treated RBCs and GPA-, GPB- and GPC-RBCs. N.J., P.L., N.M., K.Ö. and I.M.N. carried out transmembrane predictions, in vitro transcription and translation experiments and participated in the design of the study and writing of the manuscript. M. Wahlgren, J.L., G.v.H. and M.L.O. participated in the study design and in the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
M. Wahlgren holds shares in and is a director of the board of Dilaforette AB, a company of the Karolinska Development AB involved in the development of adjunct treatment for severe malaria. The authors declare no other competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–11 and Supplementary Table 1. (PDF 1387 kb)
Source data
Rights and permissions
About this article
Cite this article
Goel, S., Palmkvist, M., Moll, K. et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat Med 21, 314–317 (2015). https://doi.org/10.1038/nm.3812
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nm.3812
This article is cited by
-
STRIDE: a command-line HMM-based identifier and sub-classifier of Plasmodium falciparum RIFIN and STEVOR variant surface antigen families
BMC Bioinformatics (2022)
-
Stochastic expression of invasion genes in Plasmodium falciparum schizonts
Nature Communications (2022)
-
Red blood cell blood group A antigen level affects the ability of heparin and PfEMP1 antibodies to disrupt Plasmodium falciparum rosettes
Malaria Journal (2021)
-
Genetic polymorphism of the extracellular region in surface associated interspersed 1.1 gene of Plasmodium falciparum field isolates from Thailand
Malaria Journal (2021)
-
Structural basis of malaria RIFIN binding by LILRB1-containing antibodies
Nature (2021)