Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes

Subjects

Abstract

Insulin resistance results from several pathophysiologic mechanisms, including chronic tissue inflammation and defective insulin signaling. We found that liver, muscle and adipose tissue exhibit higher levels of the chemotactic eicosanoid LTB4 in obese high-fat diet (HFD)–fed mice. Inhibition of the LTB4 receptor Ltb4r1, through either genetic or pharmacologic loss of function, led to an anti-inflammatory phenotype with protection from insulin resistance and hepatic steatosis. In vitro treatment with LTB4 directly enhanced macrophage chemotaxis, stimulated inflammatory pathways, reduced insulin-stimulated glucose uptake in L6 myocytes, and impaired insulin-mediated suppression of hepatic glucose output in primary mouse hepatocytes. This was accompanied by lower insulin-stimulated Akt phosphorylation and higher Irs-1/2 serine phosphorylation, and all of these events were dependent on Gαi and Jnk1, two downstream mediators of Ltb4r1 signaling. These observations elucidate a novel role of the LTB4–Ltb4r1 signaling pathway in hepatocyte and myocyte insulin resistance, and they show that in vivo inhibition of Ltb4r1 leads to robust insulin-sensitizing effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of Ltb4r1 leads to an insulin-sensitive phenotype.
Figure 2: Ltb4r1 inhibitor blocks macrophage chemotaxis both in vitro and in vivo.
Figure 3: Ltb4r1 inhibitor improves epi-WAT inflammation in HFD mice.
Figure 4: Ltb4r1 inhibitor ameliorates inflammation.
Figure 5: LTB4 directly induces insulin resistance in myocytes and hepatocytes.
Figure 6: Ltb4r1 inhibitor improves hepatic steatosis.

Similar content being viewed by others

References

  1. Haffner, S. & Taegtmeyer, H. Epidemic obesity and the metabolic syndrome. Circulation 108, 1541–1545 (2003).

    Article  PubMed  Google Scholar 

  2. Olefsky, J.M. & Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Reaven, G.M. The insulin-resistance syndrome: definition and dietary approaches to treatment. Annu. Rev. Nutr. 25, 391–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Olefsky, J.M. et al. Cellular mechanisms of insulin resistance in non-insulin-dependent (type II) diabetes. Am. J. Med. 85, 86–105 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Kahn, S.E., Hull, R.L. & Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Samuel, V.T., Petersen, K.F. & Shulman, G.I. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375, 2267–2277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hotamisligil, G.S., Shargill, N.S. & Spiegelman, B.M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Shoelson, S.E., Lee, J. & Yuan, M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord. 27 (suppl. 3), S49–S52 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Mathis, D. Immunological goings-on in visceral adipose tissue. Cell Metab. 17, 851–859 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weisberg, S.P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lanthier, N. et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G107–G116 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Pillon, N.J., Bilan, P.J., Fink, L.N. & Klip, A. Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am. J. Physiol. Endocrinol. Metab. 304, E453–E465 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Chawla, A., Nguyen, K.D. & Goh, Y.P. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11, 738–749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kintscher, U. et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1304–1310 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, H. et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J. Immunol. 185, 1836–1845 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Samuelsson, B., Dahlen, S.E., Lindgren, J.A., Rouzer, C.A. & Serhan, C.N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237, 1171–1176 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, N. & Luster, A.D. Regulation of immune cells by eicosanoid receptors. ScientificWorldJournal 7, 1307–1328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tager, A.M. & Luster, A.D. BLT1 and BLT2: the leukotriene B(4) receptors. Prostaglandins Leukot. Essent. Fatty Acids 69, 123–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Toda, A., Yokomizo, T. & Shimizu, T. Leukotriene B4 receptors. Prostaglandins Other Lipid Mediat. 68–69, 575–585 (2002).

    Article  PubMed  Google Scholar 

  22. Chou, R.C. et al. Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity 33, 266–278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haribabu, B. et al. Targeted disruption of the leukotriene B(4) receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. J. Exp. Med. 192, 433–438 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Subbarao, K. et al. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler. Thromb. Vasc. Biol. 24, 369–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Spite, M. et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J. Immunol. 187, 1942–1949 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Yokomizo, T., Kato, K., Hagiya, H., Izumi, T. & Shimizu, T. Hydroxyeicosanoids bind to and activate the low affinity leukotriene B4 receptor, BLT2. J. Biol. Chem. 276, 12454–12459 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Liston, T.E. et al. Pharmacokinetics and pharmacodynamics of the leukotriene B4 receptor antagonist CP-105,696 in man following single oral administration. Br. J. Clin. Pharmacol. 45, 115–121 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aiello, R.J. et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler. Thromb. Vasc. Biol. 22, 443–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Showell, H.J., Breslow, R., Conklyn, M.J., Hingorani, G.P. & Koch, K. Characterization of the pharmacological profile of the potent LTB4 antagonist CP-105,696 on murine LTB4 receptors in vitro. Br. J. Pharmacol. 117, 1127–1132 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hicks, A., Monkarsh, S.P., Hoffman, A.F. & Goodnow, R. Jr. Leukotriene B4 receptor antagonists as therapeutics for inflammatory disease: preclinical and clinical developments. Expert Opin. Investig. Drugs 16, 1909–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Oh, D.Y., Morinaga, H., Talukdar, S., Bae, E.J. & Olefsky, J.M. Increased macrophage migration into adipose tissue in obese mice. Diabetes 61, 346–354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lumeng, C.N., Bodzin, J.L. & Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Birkenfeld, A.L. & Shulman, G.I. Nonalcoholic fatty liver disease, hepatic insulin resistance and type 2 diabetes. Hepatology 59, 713–723 (2014).

    Article  PubMed  Google Scholar 

  34. Samuel, V.T. et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345–32353 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Kumashiro, N. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 108, 16381–16385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jornayvaz, F.R. & Shulman, G.I. Diacylglycerol activation of protein kinase Cɛ and hepatic insulin resistance. Cell Metab. 15, 574–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holland, W.L. et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Invest. 121, 1858–1870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pagadala, M., Kasumov, T., McCullough, A.J., Zein, N.N. & Kirwan, J.P. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol. Metab. 23, 365–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chavez, J.A. & Summers, S.A. A ceramide-centric view of insulin resistance. Cell Metab. 15, 585–594 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Islam, S.A. et al. The leukotriene B4 lipid chemoattractant receptor BLT1 defines antigen-primed T cells in humans. Blood 107, 444–453 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weller, C.L. et al. Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J. Exp. Med. 201, 1961–1971 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Afonso, P.V. et al. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev. Cell 22, 1079–1091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamaoka, K.A., Claesson, H.E. & Rosen, A. Leukotriene B4 enhances activation, proliferation, and differentiation of human B lymphocytes. J. Immunol. 143, 1996–2000 (1989).

    CAS  PubMed  Google Scholar 

  44. Horrillo, R. et al. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J. Immunol. 184, 3978–3987 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Li, P. et al. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285, 15333–15345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, Y.S. et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157, 1339–1352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taniguchi, C.M., Emanuelli, B. & Kahn, C.R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Osborn, O. & Olefsky, J.M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Donath, M.Y., Dalmas, E., Sauter, N.S. & Boni-Schnetzler, M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab. 17, 860–872 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Larsen, C.M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Stanley, T.L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E146–E150 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Kiortsis, D.N., Mavridis, A.K., Vasakos, S., Nikas, S.N. & Drosos, A.A. Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann. Rheum. Dis. 64, 765–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Ofei, F., Hurel, S., Newkirk, J., Sopwith, M. & Taylor, R. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885 (1996).

    Article  PubMed  Google Scholar 

  54. Goldfine, A.B. et al. Targeting inflammation using salsalate in patients with type 2 diabetes (TINSAL): effects on flow-mediated dilation. Diabetes Care 36, 4132–4139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldfine, A.B. et al. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia 56, 714–723 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goldfine, A.B. et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 159, 1–12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cavelti-Weder, C. et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35, 1654–1662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sloan-Lancaster, J. et al. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care 36, 2239–2246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quehenberger, O. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51, 3299–3305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He, W. et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. USA 100, 15712–15717 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu, M. et al. Inducible nitric oxide synthase deficiency in myeloid cells does not prevent diet-induced insulin resistance. Mol. Endocrinol. 24, 1413–1422 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oh, D.Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, P. et al. NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids. Cell 155, 200–214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, Y.S. et al. Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 60, 2474–2483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bodennec, J., Brichon, G., Koul, O., El Babili, M. & Zwingelstein, G. A two-dimensional thin-layer chromatography procedure for simultaneous separation of ceramide and diacylglycerol species. J. Lipid Res. 38, 1702–1706 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Bielawska, A., Perry, D.K. & Hannun, Y.A. Determination of ceramides and diglycerides by the diglyceride kinase assay. Anal. Biochem. 298, 141–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Bektas, M., Jolly, P.S., Milstien, S. & Spiegel, S. A specific ceramide kinase assay to measure cellular levels of ceramide. Anal. Biochem. 320, 259–265 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.D. Luster from Harvard Medical School for providing the Ltb4r1-KO mice. We thank A. Klip at The Hospital for Sick Children in Canada for providing L6 myocytes. This study was funded in part by grants to J.M. Olefsky from the US National Institute of Diabetes and Digestive and Kidney Diseases (DK033651, DK074868, DK063491, DK09062), the Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health through a Cooperative Centers Program in Reproduction and Infertility Research (J.M. Olefsky), and a grant to J.M.Olefsky from Merck, Inc.

Author information

Authors and Affiliations

Authors

Contributions

P.L. designed the studies and performed most of the experiments; D.Y.O. performed macrophage signaling, chemotaxis, and FACS analysis; G.B. did glucose uptake and gluconeogenesis assay and western blot. W.S.L., M.L. and S. Talukdar assisted with hyperinsulinemic-euglycemic clamps; A.J., M.M., O.O. and R.M. assisted with collecting tissues and gene expression measurements; H.C. performed the GTT in female ovariectomized mice; J.M. Ofrecio and S. Taguchi assisted with genotyping; P.L. and J.M. Olefsky analyzed and interpreted the data, supervised the project, and co-wrote the manuscript.

Corresponding authors

Correspondence to Pingping Li or Jerrold M Olefsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 7836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Oh, D., Bandyopadhyay, G. et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat Med 21, 239–247 (2015). https://doi.org/10.1038/nm.3800

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing