Technical Report | Published:

Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy

Nature Medicine volume 21, pages 288294 (2015) | Download Citation

Abstract

Currently, major concerns about the safety and efficacy of RNA interference (RNAi)-based bone anabolic strategies still exist because of the lack of direct osteoblast-specific delivery systems for osteogenic siRNAs. Here we screened the aptamer CH6 by cell-SELEX, specifically targeting both rat and human osteoblasts, and then we developed CH6 aptamer–functionalized lipid nanoparticles (LNPs) encapsulating osteogenic pleckstrin homology domain-containing family O member 1 (Plekho1) siRNA (CH6-LNPs-siRNA). Our results showed that CH6 facilitated in vitro osteoblast-selective uptake of Plekho1 siRNA, mainly via macropinocytosis, and boosted in vivo osteoblast-specific Plekho1 gene silencing, which promoted bone formation, improved bone microarchitecture, increased bone mass and enhanced mechanical properties in both osteopenic and healthy rodents. These results indicate that osteoblast-specific aptamer-functionalized LNPs could act as a new RNAi-based bone anabolic strategy, advancing the targeted delivery selectivity of osteogenic siRNAs from the tissue level to the cellular level.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & RNA interference technologies and therapeutics: from basic research to products. BioDrugs 23, 305–332 (2009).

  2. 2.

    & The RNAi revolution. Nature 430, 161–164 (2004).

  3. 3.

    & RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv. Drug Deliv. Rev. 64, 1341–1357 (2012).

  4. 4.

    et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat. Cell Biol. 10, 994–1002 (2008).

  5. 5.

    et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 18, 307–314 (2012).

  6. 6.

    , , & Bone-targeting macromolecular therapeutics. Adv. Drug Deliv. Rev. 57, 1049–1076 (2005).

  7. 7.

    et al. miR-214 targets ATF4 to inhibit bone formation. Nat. Med. 19, 93–100 (2013).

  8. 8.

    & Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008).

  9. 9.

    Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res. 11, 8230–8234 (2005).

  10. 10.

    , , & Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration. J. Drug Target. 18, 611–626 (2010).

  11. 11.

    & Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117, 3623–3632 (2007).

  12. 12.

    et al. Generating aptamers by cell-SELEX for applications in molecular medicine. Int. J. Mol. Sci. 13, 3341–3353 (2012).

  13. 13.

    , , , & Development of DNA aptamers using cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

  14. 14.

    , & Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics 5, 498–507 (2013).

  15. 15.

    et al. Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes. J. Control. Release 130, 266–274 (2008).

  16. 16.

    et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).

  17. 17.

    et al. Rational truncation of an RNA aptamer to prostate-specific membrane antigen using computational structural modeling. Nucleic Acid Ther. 21, 299–314 (2011).

  18. 18.

    , & Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

  19. 19.

    et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 116, 2678–2686 (2007).

  20. 20.

    , , , & Dynamin 2 mediates fluid-phase micropinocytosis in epithelial cells. J. Cell Sci. 120, 4167–4177 (2007).

  21. 21.

    et al. The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol. Ther. 18, 561–569 (2010).

  22. 22.

    & Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89, 836–843 (2011).

  23. 23.

    , & Regulation of alkaline phosphatase and alpha 2(I) procollagen synthesis during early intramembranous bone formation in the rat mandible. Differentiation 44, 207–215 (1990).

  24. 24.

    , , , & Isolation and characterization of a novel peptide, osteoblast activating peptide (OBAP), associated with osteoblast differentiation and bone formation. Biochem. Biophys. Res. Commun. 400, 157–163 (2010).

  25. 25.

    et al. Involvement of FcRgamma in signal transduction of osteoclast-associated receptor (OSCAR). Int. Immunol. 16, 1019–1025 (2004).

  26. 26.

    et al. Induction of osteoclast-associated receptor, a key osteoclast costimulation molecule, in rheumatoid arthritis. Arthritis Rheum. 58, 3041–3050 (2008).

  27. 27.

    et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J. Clin. Invest. 123, 666–681 (2013).

  28. 28.

    et al. Therapeutic RNA interference targeting CKIP-1 with a cross-species sequence to stimulate bone formation. Bone 59, 76–88 (2014).

  29. 29.

    , , , & Pentosidine effects on human osteoblasts in vitro. Ann. NY Acad. Sci. 1126, 166–172 (2008).

  30. 30.

    et al. Gene expression relevant to osteoclastogenesis in the synovium and bone marrow of mature rats with collagen-induced arthritis. Rheumatology (Oxford) 43, 1496–1503 (2004).

  31. 31.

    , , , & Human primary osteoclasts: in vitro generation and applications as pharmacological and clinical assay. J. Transl. Med. 2, 6 (2004).

  32. 32.

    et al. Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J.Hematol. Oncol. 7, 5 (2014).

  33. 33.

    et al. Preparation of aptamer-functionalized lipid nanoparticles (LNPs) encapsulating siRNAs. Protocol Exchange (2014).

  34. 34.

    et al. Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone 41, 631–638 (2007).

  35. 35.

    et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

Download references

Acknowledgements

We thank the academic staff (L. Qin) from the Chinese University of Hong Kong and H.Y.S. Cheung from the Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University for providing critical comments and technical support. This study was supported by the Ministry of Science and Technology of China (2013ZX09301307 to A.L.), the Hong Kong General Research Fund (HKBU479111 to G.Z., HKBU478312 to G.Z., HKBU12102914 to G.Z. and HKBU261113 to A.L.), the Natural Science Foundation Council of China (81272045 to G.Z., 81228013 to J.X. and 21221003 to W.T.), the Research Grants Council & Natural Science Foundation Council of China (N_HKBU435/12 to G.Z.), the Interdisciplinary Research Matching Scheme (IRMS) of Hong Kong Baptist University (RC-IRMS/12-13/02 to A.L. and RC-IRMS/13-14/02 to G.Z.), the Hong Kong Baptist University Strategic Development Fund (SDF) (SDF13-1209-P01 to A.L.), the Hong Kong Research Grants Council (RGC) Early Career Scheme (ECS) (489213 to B.-T.Z.), the Faculty Research Grant of Hong Kong Baptist University (FRG1/13-14/024 and FRG2/12-13/027 to G.Z.), the China Academy of Chinese Medical Sciences (Z0252 and Z0293 to A.L.), the Chinese National High-Tech Research and Development Programme (2012AA022501 to N.S.), the National Key Technologies R&D Programs for New Drugs of China (2012ZX09301003-001-001 and 2014ZX09J14106-04C to L.Z.), the Collaborative Research Programme (CRP)-International Centre for Genetic Engineering and Biotechnology (ICGEB) grant (CRP/CHN13-02 to L.Z.), the Chinese National Natural Science Foundation Project (81261160503 to L.Z.), the National Key Scientific Program of China (2011CB911000 to W.T.), the National Institutes of Health (GM079359 to W.T.) and the Beijing Natural Science Foundation (7131012 to L.Z.). The statistical analysis was performed by a contract service from Bioinformedicine (http://www.bioinformedicine.com/index.php).

Author information

Author notes

    • Chao Liang
    • , Baosheng Guo
    •  & Heng Wu

    These authors contributed equally to this work.

Affiliations

  1. Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.

    • Chao Liang
    • , Baosheng Guo
    • , Heng Wu
    • , Defang Li
    • , Jin Liu
    • , Lei Dang
    • , Cheng Wang
    • , Wing Ki Lau
    • , Zhijun Yang
    • , Cheng Lu
    • , Xiaojuan He
    • , Xiaohua Pan
    • , Changwei Lu
    • , Hongqi Zhang
    • , Kinman Yue
    • , Lianbo Xiao
    • , Zhaoxiang Bian
    • , Weihong Tan
    • , Aiping Lu
    •  & Ge Zhang
  2. Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.

    • Chao Liang
    • , Baosheng Guo
    • , Cheng Lu
    • , Xiaojuan He
    • , Aiping Lu
    •  & Ge Zhang
  3. State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China.

    • Chao Liang
    • , Yu Cao
    • , Fuchu He
    •  & Lingqiang Zhang
  4. Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China.

    • Chao Liang
    • , Baosheng Guo
    • , Heng Wu
    • , Defang Li
    • , Jin Liu
    • , Lei Dang
    • , Zhijun Yang
    • , Cheng Lu
    • , Xiaojuan He
    • , Zhaoxiang Bian
    • , Zicai Liang
    • , Aiping Lu
    •  & Ge Zhang
  5. Institute of Integrated Bioinfomedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, China.

    • Chao Liang
    • , Baosheng Guo
    • , Heng Wu
    • , Defang Li
    • , Jin Liu
    • , Lei Dang
    • , Zhijun Yang
    • , Cheng Lu
    • , Xiaojuan He
    • , Zhaoxiang Bian
    • , Aiping Lu
    •  & Ge Zhang
  6. Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, China.

    • Chao Liang
    • , Baosheng Guo
    • , Heng Wu
    • , Defang Li
    • , Jin Liu
    • , Lei Dang
    • , Zhijun Yang
    • , Cheng Lu
    • , Xiaojuan He
    • , Zhaoxiang Bian
    • , Aiping Lu
    •  & Ge Zhang
  7. Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong, China.

    • Chao Liang
    • , Baosheng Guo
    • , Heng Wu
    • , Defang Li
    • , Jin Liu
    • , Lei Dang
    • , Zhijun Yang
    • , Cheng Lu
    • , Xiaojuan He
    • , Zhaoxiang Bian
    • , Weihong Tan
    • , Aiping Lu
    •  & Ge Zhang
  8. Hong Kong Baptist University–Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, China.

    • Chao Liang
    • , Baosheng Guo
    • , Defang Li
    • , Jin Liu
    • , Lei Dang
    • , Cheng Lu
    • , Airong Qian
    • , Peng Shang
    • , Aiping Lu
    •  & Ge Zhang
  9. Department of Biochemistry and Molecular Biology, Beijing Institute of Basic Medical Science, Beijing, China.

    • Ningsheng Shao
    • , Hui Li
    •  & Shaohua Li
  10. Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, China.

    • Cheng Wang
  11. Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China.

    • D W T Au
  12. School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.

    • Bao-Ting Zhang
  13. Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, China.

    • Airong Qian
    • , Peng Shang
    •  & Ge Zhang
  14. Molecular Laboratory, School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia.

    • Jiake Xu
  15. Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China.

    • Lianbo Xiao
    • , Aiping Lu
    •  & Ge Zhang
  16. Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

    • Weihong Tan
  17. College of Biology, Hunan University, Changsha, China.

    • Weihong Tan
  18. Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, China.

    • Weihong Tan
  19. Department of Chemistry, University of Florida, Gainesville, Florida, USA.

    • Weihong Tan
  20. Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA.

    • Weihong Tan
  21. Center for Research at Bio/Nano Interface, Shands Cancer Center, University of Florida, Gainesville, Florida, USA.

    • Weihong Tan

Authors

  1. Search for Chao Liang in:

  2. Search for Baosheng Guo in:

  3. Search for Heng Wu in:

  4. Search for Ningsheng Shao in:

  5. Search for Defang Li in:

  6. Search for Jin Liu in:

  7. Search for Lei Dang in:

  8. Search for Cheng Wang in:

  9. Search for Hui Li in:

  10. Search for Shaohua Li in:

  11. Search for Wing Ki Lau in:

  12. Search for Yu Cao in:

  13. Search for Zhijun Yang in:

  14. Search for Cheng Lu in:

  15. Search for Xiaojuan He in:

  16. Search for D W T Au in:

  17. Search for Xiaohua Pan in:

  18. Search for Bao-Ting Zhang in:

  19. Search for Changwei Lu in:

  20. Search for Hongqi Zhang in:

  21. Search for Kinman Yue in:

  22. Search for Airong Qian in:

  23. Search for Peng Shang in:

  24. Search for Jiake Xu in:

  25. Search for Lianbo Xiao in:

  26. Search for Zhaoxiang Bian in:

  27. Search for Weihong Tan in:

  28. Search for Zicai Liang in:

  29. Search for Fuchu He in:

  30. Search for Lingqiang Zhang in:

  31. Search for Aiping Lu in:

  32. Search for Ge Zhang in:

Contributions

G.Z., A.L. and L.Z. supervised the whole project. C. Liang, B.G. and H.W. performed the major research and wrote the manuscript in equal contribution. D.L., J.L., C.W., W.K.L., Changwei Lu, Y.C. and L.D. provided the technical support. X.H., D.W.T.A., Cheng Lu, H.L., S.L., B.-T.Z., N.S., Z.Y., X.P., H.Z., K.Y., A.Q., P.S., J.X., L.X., Z.L., Z.B., F.H. and W.T. provided their professional expertise.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Lingqiang Zhang or Aiping Lu or Ge Zhang.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–8, Supplementary Tables 1–4

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nm.3791

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing