Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy


Currently, major concerns about the safety and efficacy of RNA interference (RNAi)-based bone anabolic strategies still exist because of the lack of direct osteoblast-specific delivery systems for osteogenic siRNAs. Here we screened the aptamer CH6 by cell-SELEX, specifically targeting both rat and human osteoblasts, and then we developed CH6 aptamer–functionalized lipid nanoparticles (LNPs) encapsulating osteogenic pleckstrin homology domain-containing family O member 1 (Plekho1) siRNA (CH6-LNPs-siRNA). Our results showed that CH6 facilitated in vitro osteoblast-selective uptake of Plekho1 siRNA, mainly via macropinocytosis, and boosted in vivo osteoblast-specific Plekho1 gene silencing, which promoted bone formation, improved bone microarchitecture, increased bone mass and enhanced mechanical properties in both osteopenic and healthy rodents. These results indicate that osteoblast-specific aptamer-functionalized LNPs could act as a new RNAi-based bone anabolic strategy, advancing the targeted delivery selectivity of osteogenic siRNAs from the tissue level to the cellular level.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cell-SELEX for the identification of osteoblast-specific aptamers.
Figure 2: Cellular selectivity, gene knockdown efficiency and mechanism of cellular uptake of various siRNA formulations.
Figure 3: Tissue distribution and cell-selective delivery of various siRNA formulations in vivo.
Figure 4: Cell-selective gene knockdown efficiency, dose-response pattern and persistence of gene silencing in vivo.
Figure 5: MicroCT examinations of proximal tibia and histomorphometric analysis of trabecular bone at the distal metaphysis of femur in osteopenic rats.


  1. 1

    López-Fraga, M., Martinez, T. & Jimenez, A. RNA interference technologies and therapeutics: from basic research to products. BioDrugs 23, 305–332 (2009).

    Article  Google Scholar 

  2. 2

    Novina, C.D. & Sharp, P.A. The RNAi revolution. Nature 430, 161–164 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Wang, Y. & Grainger, D.W. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv. Drug Deliv. Rev. 64, 1341–1357 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Lu, K. et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat. Cell Biol. 10, 994–1002 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Zhang, G. et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 18, 307–314 (2012).

    Article  Google Scholar 

  6. 6

    Wang, D., Miller, S.C., Kopeckova, P. & Kopecek, J. Bone-targeting macromolecular therapeutics. Adv. Drug Deliv. Rev. 57, 1049–1076 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Wang, X. et al. miR-214 targets ATF4 to inhibit bone formation. Nat. Med. 19, 93–100 (2013).

    Article  Google Scholar 

  8. 8

    Li, S.D. & Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Zamboni, W.C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res. 11, 8230–8234 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Wang, G., Kucharski, C., Lin, X. & Uludag, H. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration. J. Drug Target. 18, 611–626 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Akhtar, S. & Benter, I.F. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117, 3623–3632 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Ye, M. et al. Generating aptamers by cell-SELEX for applications in molecular medicine. Int. J. Mol. Sci. 13, 3341–3353 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Sefah, K., Shangguan, D., Xiong, X., O'Donoghue, M.B. & Tan, W. Development of DNA aptamers using cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Tam, Y.Y., Chen, S. & Cullis, P.R. Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics 5, 498–507 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Auguste, D.T. et al. Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes. J. Control. Release 130, 266–274 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Mui, B.L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Rockey, W.M. et al. Rational truncation of an RNA aptamer to prostate-specific membrane antigen using computational structural modeling. Nucleic Acid Ther. 21, 299–314 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Keefe, A.D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Gilbert, J.C. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 116, 2678–2686 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Cao, H., Chen, J., Awoniyi, M., Henley, J.R. & McNiven, M.A. Dynamin 2 mediates fluid-phase micropinocytosis in epithelial cells. J. Cell Sci. 120, 4167–4177 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Vercauteren, D. et al. The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol. Ther. 18, 561–569 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Lim, J.P. & Gleeson, P.A. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89, 836–843 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Zernik, J., Twarog, K. & Upholt, W.B. Regulation of alkaline phosphatase and alpha 2(I) procollagen synthesis during early intramembranous bone formation in the rat mandible. Differentiation 44, 207–215 (1990).

    CAS  Article  Google Scholar 

  24. 24

    Fukushima, N., Hiraoka, K., Shirachi, I., Kojima, M. & Nagata, K. Isolation and characterization of a novel peptide, osteoblast activating peptide (OBAP), associated with osteoblast differentiation and bone formation. Biochem. Biophys. Res. Commun. 400, 157–163 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Ishikawa, S. et al. Involvement of FcRgamma in signal transduction of osteoclast-associated receptor (OSCAR). Int. Immunol. 16, 1019–1025 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Herman, S. et al. Induction of osteoclast-associated receptor, a key osteoclast costimulation molecule, in rheumatoid arthritis. Arthritis Rheum. 58, 3041–3050 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Lotinun, S. et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J. Clin. Invest. 123, 666–681 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Guo, B. et al. Therapeutic RNA interference targeting CKIP-1 with a cross-species sequence to stimulate bone formation. Bone 59, 76–88 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Sanguineti, R., Storace, D., Monacelli, F., Federici, A. & Odetti, P. Pentosidine effects on human osteoblasts in vitro. Ann. NY Acad. Sci. 1126, 166–172 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Kishimoto, Y. et al. Gene expression relevant to osteoclastogenesis in the synovium and bone marrow of mature rats with collagen-induced arthritis. Rheumatology (Oxford) 43, 1496–1503 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Susa, M., Luong-Nguyen, N.H., Cappellen, D., Zamurovic, N. & Gamse, R. Human primary osteoclasts: in vitro generation and applications as pharmacological and clinical assay. J. Transl. Med. 2, 6 (2004).

    Article  Google Scholar 

  32. 32

    Yang, M. et al. Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J.Hematol. Oncol. 7, 5 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Wu, H. et al. Preparation of aptamer-functionalized lipid nanoparticles (LNPs) encapsulating siRNAs. Protocol Exchange doi:10.1038/protex.2014.053 (2014).

  34. 34

    Hao, Y.J. et al. Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone 41, 631–638 (2007).

    Article  Google Scholar 

  35. 35

    Semple, S.C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    CAS  Article  Google Scholar 

Download references


We thank the academic staff (L. Qin) from the Chinese University of Hong Kong and H.Y.S. Cheung from the Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University for providing critical comments and technical support. This study was supported by the Ministry of Science and Technology of China (2013ZX09301307 to A.L.), the Hong Kong General Research Fund (HKBU479111 to G.Z., HKBU478312 to G.Z., HKBU12102914 to G.Z. and HKBU261113 to A.L.), the Natural Science Foundation Council of China (81272045 to G.Z., 81228013 to J.X. and 21221003 to W.T.), the Research Grants Council & Natural Science Foundation Council of China (N_HKBU435/12 to G.Z.), the Interdisciplinary Research Matching Scheme (IRMS) of Hong Kong Baptist University (RC-IRMS/12-13/02 to A.L. and RC-IRMS/13-14/02 to G.Z.), the Hong Kong Baptist University Strategic Development Fund (SDF) (SDF13-1209-P01 to A.L.), the Hong Kong Research Grants Council (RGC) Early Career Scheme (ECS) (489213 to B.-T.Z.), the Faculty Research Grant of Hong Kong Baptist University (FRG1/13-14/024 and FRG2/12-13/027 to G.Z.), the China Academy of Chinese Medical Sciences (Z0252 and Z0293 to A.L.), the Chinese National High-Tech Research and Development Programme (2012AA022501 to N.S.), the National Key Technologies R&D Programs for New Drugs of China (2012ZX09301003-001-001 and 2014ZX09J14106-04C to L.Z.), the Collaborative Research Programme (CRP)-International Centre for Genetic Engineering and Biotechnology (ICGEB) grant (CRP/CHN13-02 to L.Z.), the Chinese National Natural Science Foundation Project (81261160503 to L.Z.), the National Key Scientific Program of China (2011CB911000 to W.T.), the National Institutes of Health (GM079359 to W.T.) and the Beijing Natural Science Foundation (7131012 to L.Z.). The statistical analysis was performed by a contract service from Bioinformedicine (

Author information




G.Z., A.L. and L.Z. supervised the whole project. C. Liang, B.G. and H.W. performed the major research and wrote the manuscript in equal contribution. D.L., J.L., C.W., W.K.L., Changwei Lu, Y.C. and L.D. provided the technical support. X.H., D.W.T.A., Cheng Lu, H.L., S.L., B.-T.Z., N.S., Z.Y., X.P., H.Z., K.Y., A.Q., P.S., J.X., L.X., Z.L., Z.B., F.H. and W.T. provided their professional expertise.

Corresponding authors

Correspondence to Lingqiang Zhang, Aiping Lu or Ge Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–4 (PDF 3497 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Guo, B., Wu, H. et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy. Nat Med 21, 288–294 (2015).

Download citation

Further reading


Quick links