Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia

Abstract

Mutant isocitrate dehydrogenase (IDH) 1 and 2 proteins alter the epigenetic landscape in acute myeloid leukemia (AML) cells through production of the oncometabolite (R)-2-hydroxyglutarate (2-HG). Here we performed a large-scale RNA interference (RNAi) screen to identify genes that are synthetic lethal to the IDH1R132H mutation in AML and identified the anti-apoptotic gene BCL-2. IDH1- and IDH2-mutant primary human AML cells were more sensitive than IDH1/2 wild-type cells to ABT-199, a highly specific BCL-2 inhibitor that is currently in clinical trials for hematologic malignancies, both ex vivo and in xenotransplant models. This sensitization effect was induced by (R)-2-HG–mediated inhibition of the activity of cytochrome c oxidase (COX) in the mitochondrial electron transport chain (ETC); suppression of COX activity lowered the mitochondrial threshold to trigger apoptosis upon BCL-2 inhibition. Our findings indicate that IDH1/2 mutation status may identify patients that are likely to respond to pharmacologic BCL-2 inhibition and form the rational basis for combining agents that disrupt ETC activity with ABT-199 in future clinical studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of BCL-2 as synthetic lethal to mutant IDH1.
Figure 2: (R)-2-HG sensitizes AML cells to pharmacologic BCL-2 inhibition.
Figure 3: ABT-199 targets IDH1/2 mutant primary human AML cells.
Figure 4: (R)-2-HG–mediated inhibition of cytochrome c oxidase activity induces BCL-2 dependence.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Raimundo, N., Baysal, B.E. & Shadel, G.S. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol. Med. 17, 641–649 (2011).

    Article  CAS  Google Scholar 

  2. Mardis, E.R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    Article  CAS  Google Scholar 

  3. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  Google Scholar 

  4. Gross, S. et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med. 207, 339–344 (2010).

    Article  CAS  Google Scholar 

  5. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  6. Patel, J.P. et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089 (2012).

    Article  CAS  Google Scholar 

  7. Ward, P.S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    Article  CAS  Google Scholar 

  8. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  Google Scholar 

  9. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate–dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  Google Scholar 

  10. Figueroa, M.E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  Google Scholar 

  11. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    Article  CAS  Google Scholar 

  12. Shlush, L.I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  CAS  Google Scholar 

  13. Corces-Zimmerman, M.R., Hong, W.J., Weissman, I.L., Medeiros, B.C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl. Acad. Sci. USA 111, 2548–2553 (2014).

    Article  CAS  Google Scholar 

  14. Chan, S.M. & Majeti, R. Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. Int. J. Hematol. 98, 648–657 (2013).

    Article  CAS  Google Scholar 

  15. Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 4, 149ra118 (2012).

    Article  Google Scholar 

  16. Chou, W.C. et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia 25, 246–253 (2011).

    Article  CAS  Google Scholar 

  17. Chou, W.C. et al. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood 115, 2749–2754 (2010).

    Article  CAS  Google Scholar 

  18. Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    Article  CAS  Google Scholar 

  19. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    Article  CAS  Google Scholar 

  20. Luo, J., Solimini, N.L. & Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  Google Scholar 

  21. Souers, A.J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  Google Scholar 

  22. Pan, R. et al. Selective BCL-2 inhibition by ABT-199 causes on target cell death in acute myeloid leukemia. Cancer Discov. 4, 362–375 (2014).

    Article  CAS  Google Scholar 

  23. BCL-2 inhibitor yields high response in CLL and SLL. Cancer Discov. 4, OF5 (2014).

  24. Dick, J.E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    Article  CAS  Google Scholar 

  25. Saito, Y. et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol. 28, 275–280 (2010).

    Article  CAS  Google Scholar 

  26. Craddock, C. et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia 27, 1028–1036 (2013).

    Article  CAS  Google Scholar 

  27. Ni Chonghaile, T. & Letai, A. Mimicking the BH3 domain to kill cancer cells. Oncogene 27 (suppl. 1), S149–S157 (2008).

    Article  Google Scholar 

  28. Ryan, J. & Letai, A. BH3 profiling in whole cells by fluorimeter or FACS. Methods 61, 156–164 (2013).

    Article  CAS  Google Scholar 

  29. Danial, N.N. BAD: undertaker by night, candyman by day. Oncogene 27 (suppl. 1), S53–S70 (2008).

    Article  CAS  Google Scholar 

  30. Ploner, C., Kofler, R. & Villunger, A. Noxa: at the tip of the balance between life and death. Oncogene 27 (suppl. 1), S84–S92 (2008).

    Article  CAS  Google Scholar 

  31. Glaser, S.P. et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 26, 120–125 (2012).

    Article  CAS  Google Scholar 

  32. Shi, J. et al. An IDH1 mutation inhibits growth of glioma cells via GSH depletion and ROS generation. Neurol. Sci. 35, 839–845 (2014).

    Article  Google Scholar 

  33. Mohrenz, I.V. et al. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death. Apoptosis 18, 1416–1425 (2013).

    Article  CAS  Google Scholar 

  34. Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L. & Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251 (1993).

    Article  CAS  Google Scholar 

  35. da Silva, C.G. et al. Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by D-2-hydroxyglutaric acid in vitro. Biochim. Biophys. Acta 1586, 81–91 (2002).

    Article  CAS  Google Scholar 

  36. Latini, A. et al. Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues. Mol. Genet. Metab. 86, 188–199 (2005).

    Article  CAS  Google Scholar 

  37. Wajne, M. et al. d-2-Hydroxyglutaric aciduria in a patient with a severe clinical phenotype and unusual MRI findings. J. Inherit. Metab. Dis. 25, 28–34 (2002).

    Article  CAS  Google Scholar 

  38. Rohlena, J., Dong, L.F. & Neuzil, J. Targeting the mitochondrial electron transport chain complexes for the induction of apoptosis and cancer treatment. Curr. Pharm. Biotechnol. 14, 377–389 (2013).

    Article  CAS  Google Scholar 

  39. Rohlena, J., Dong, L.F., Ralph, S.J. & Neuzil, J. Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid. Redox Signal. 15, 2951–2974 (2011).

    Article  CAS  Google Scholar 

  40. Grassian, A.R. et al. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 74, 3317–3331 (2014).

    Article  CAS  Google Scholar 

  41. Choi, C. et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 18, 624–629 (2012).

    Article  CAS  Google Scholar 

  42. Kölker, S. et al. NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in D-2-hydroxyglutaric aciduria. Eur. J. Neurosci. 16, 21–28 (2002).

    Article  Google Scholar 

  43. Capaldi, R.A. Structure and function of cytochrome c oxidase. Annu. Rev. Biochem. 59, 569–596 (1990).

    Article  CAS  Google Scholar 

  44. Sherman, D., Kotake, S., Ishibe, N. & Copeland, R.A. Resolution of the electronic transitions of cytochrome c oxidase: evidence for two conformational states of ferrous cytochrome α. Proc. Natl. Acad. Sci. USA 88, 4265–4269 (1991).

    Article  CAS  Google Scholar 

  45. Nicholls, P. & Hildebrandt, V. Binding of ligands and spectral shifts in cytochrome c oxidase. Biochem. J. 173, 65–72 (1978).

    Article  CAS  Google Scholar 

  46. Yoshikawa, S., Mochizuki, M., Zhao, X.J. & Caughey, W.S. Effects of overall oxidation state on infrared spectra of heme a3 cyanide in bovine heart cytochrome c oxidase. Evidence of novel mechanistic roles for CuB. J. Biol. Chem. 270, 4270–4279 (1995).

    Article  CAS  Google Scholar 

  47. Way, J.L. Cyanide intoxication and its mechanism of antagonism. Annu. Rev. Pharmacol. Toxicol. 24, 451–481 (1984).

    Article  CAS  Google Scholar 

  48. Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    Article  CAS  Google Scholar 

  49. Li, Y., Park, J.S., Deng, J.H. & Bai, Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J. Bioenerg. Biomembr. 38, 283–291 (2006).

    Article  CAS  Google Scholar 

  50. Skrtić, M. et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20, 674–688 (2011).

    Article  Google Scholar 

  51. McClintock, D.S. et al. Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol. Cell. Biol. 22, 94–104 (2002).

    Article  CAS  Google Scholar 

  52. Saikumar, P. et al. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17, 3401–3415 (1998).

    Article  CAS  Google Scholar 

  53. Hetschko, H. et al. BH3 mimetics reactivate autophagic cell death in anoxia-resistant malignant glioma cells. Neoplasia 10, 873–885 (2008).

    Article  CAS  Google Scholar 

  54. Shimizu, S. et al. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 374, 811–813 (1995).

    Article  CAS  Google Scholar 

  55. Shroff, E.H., Snyder, C. & Chandel, N.S. Role of Bcl-2 family members in anoxia induced cell death. Cell Cycle 6, 807–809 (2007).

    Article  CAS  Google Scholar 

  56. Silkjaer, T. et al. Characterization and prognostic significance of mitochondrial DNA variations in acute myeloid leukemia. Eur. J. Haematol. 90, 385–396 (2013).

    Article  CAS  Google Scholar 

  57. Larman, T.C. et al. Spectrum of somatic mitochondrial mutations in five cancers. Proc. Natl. Acad. Sci. USA 109, 14087–14091 (2012).

    Article  CAS  Google Scholar 

  58. Vo, T.T. et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012).

    Article  CAS  Google Scholar 

  59. Konopleva, M. et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10, 375–388 (2006).

    Article  CAS  Google Scholar 

  60. Lagadinou, E.D. et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329–341 (2013).

    Article  CAS  Google Scholar 

  61. Xu, Q., Thompson, J.E. & Carroll, M. mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106, 4261–4268 (2005).

    Article  CAS  Google Scholar 

  62. von Bonin, M. et al. In vivo expansion of co-transplanted T cells impacts on tumor re-initiating activity of human acute myeloid leukemia in NSG mice. PLoS ONE 8, e60680 (2013).

    Article  CAS  Google Scholar 

  63. Ryan, J. & Letai, A. BH3 profiling in whole cells by fluorimeter or FACS. Methods 61, 156–164 (2013).

    Article  CAS  Google Scholar 

  64. Chen, J. et al. The Bcl-2/Bcl-XL/Bcl-w inhibitor, navitoclax, enhances the activity of chemotherapeutic agents in vitro and in vivo. Mol. Cancer Ther. 10, 2340–2349 (2011).

    Article  CAS  Google Scholar 

  65. Ward, P.S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Hematology Division Tissue Bank and the patients for donating their samples. We acknowledge A. Giaccia for providing access to the Seahorse extracellular flux analyzer. S.M.C. is supported by a Stanford University School of Medicine Dean's Postdoctoral Fellowship and an American Society of Hematology Scholar Award. R.M. holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund and is a New York Stem Cell Foundation Robertson Investigator. This research was supported by the Burroughs Wellcome Fund, the New York Stem Cell Foundation, and a National Institutes of Health grant (R01CA188055) to R.M.

Author information

Authors and Affiliations

Authors

Contributions

S.M.C., D.T. and R.M. designed experiments. S.M.C., D.T., M.R.C.-Z., S.X., S.R., W.-J.H. and F.Z. performed the experiments. S.M.C., B.C.M., D.A.T. and R.M. analyzed and interpreted the data. S.M.C. and R.M. wrote the manuscript.

Corresponding author

Correspondence to Ravindra Majeti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Tables 1–4. (PDF 4564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, S., Thomas, D., Corces-Zimmerman, M. et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med 21, 178–184 (2015). https://doi.org/10.1038/nm.3788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3788

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer