Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction

A Corrigendum to this article was published on 06 April 2016

This article has been updated

Abstract

Paracrine-acting proteins are emerging as a central mechanism by which bone marrow cell–based therapies improve tissue repair and heart function after myocardial infarction (MI). We carried out a bioinformatic secretome analysis in bone marrow cells from patients with acute MI to identify novel secreted proteins with therapeutic potential. Functional screens revealed a secreted protein encoded by an open reading frame on chromosome 19 (C19orf10) that promotes cardiac myocyte survival and angiogenesis. We show that bone marrow–derived monocytes and macrophages produce this protein endogenously to protect and repair the heart after MI, and we named it myeloid-derived growth factor (MYDGF). Whereas Mydgf-deficient mice develop larger infarct scars and more severe contractile dysfunction compared to wild-type mice, treatment with recombinant Mydgf reduces scar size and contractile dysfunction after MI. This study is the first to assign a biological function to MYDGF, and it may serve as a prototypical example for the development of protein-based therapies for ischemic tissue repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioinformatic secretome analysis and functional screens.
Figure 2: Mydgf protects cardiac myocytes from simulated ischemia and reperfusion injury.
Figure 3: Mydgf promotes endothelial cell proliferation.
Figure 4: MYDGF expression in the heart after MI (coronary artery ligation for 1 h followed by reperfusion).
Figure 5: Tissue repair and remodeling after MI (coronary artery ligation for 1 h followed by reperfusion) in Mydgf wild-type (WT) and knockout (KO) mice.
Figure 6: Mydgf protein therapy after MI (coronary artery ligation for 1 h followed by reperfusion in FVB/N mice).

Similar content being viewed by others

Change history

  • 19 November 2015

    In the version of this article initially published, the article number in reference 13 is incorrectly stated as '100ra190' and should be '100ra90'. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Go, A.S. et al. Heart disease and stroke statistics 2013 update: a report from the American Heart Association. Circulation 127, e6–e245 (2013).

    Google Scholar 

  2. White, H.D. & Chew, D.P. Acute myocardial infarction. Lancet 372, 570–584 (2008).

    Article  CAS  Google Scholar 

  3. Burns, R.J. et al. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J. Am. Coll. Cardiol. 39, 30–36 (2002).

    Article  Google Scholar 

  4. Kelle, S. et al. Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J. Am. Coll. Cardiol. 54, 1770–1777 (2009).

    Article  Google Scholar 

  5. Velagaleti, R.S. et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118, 2057–2062 (2008).

    Article  Google Scholar 

  6. Wollert, K.C. & Drexler, H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat. Rev. Cardiol. 7, 204–215 (2010).

    Article  Google Scholar 

  7. Kamihata, H. et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104, 1046–1052 (2001).

    Article  CAS  Google Scholar 

  8. van der Bogt, K.E. et al. Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 118, S121–S129 (2008).

    Article  Google Scholar 

  9. Delewi, R. et al. Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. Eur. Heart J. 35, 989–998 (2014).

    Article  Google Scholar 

  10. Assmus, B. et al. Red blood cell contamination of the final cell product impairs the efficacy of autologous bone marrow mononuclear cell therapy. J. Am. Coll. Cardiol. 55, 1385–1394 (2010).

    Article  Google Scholar 

  11. Seeger, F.H. et al. Heparin disrupts the CXCR4/SDF-1 axis and impairs the functional capacity of bone marrow-derived mononuclear cells used for cardiovascular repair. Circ. Res. 111, 854–862 (2012).

    Article  CAS  Google Scholar 

  12. Dimmeler, S. & Leri, A. Aging and disease as modifiers of efficacy of cell therapy. Circ. Res. 102, 1319–1330 (2008).

    Article  CAS  Google Scholar 

  13. Wang, X. et al. Donor myocardial infarction impairs the therapeutic potential of bone marrow cells by an interleukin-1-mediated inflammatory response. Sci. Transl. Med. 3, 100ra90 (2011).

    Google Scholar 

  14. Laflamme, M.A. & Murry, C.E. Heart regeneration. Nature 473, 326–335 (2011).

    Article  CAS  Google Scholar 

  15. Gnecchi, M. et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11, 367–368 (2005).

    Article  CAS  Google Scholar 

  16. Gnecchi, M., Zhang, Z., Ni, A. & Dzau, V.J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103, 1204–1219 (2008).

    Article  CAS  Google Scholar 

  17. Lee, R.H. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54–63 (2009).

    Article  CAS  Google Scholar 

  18. Ranganath, S.H., Levy, O., Inamdar, M.S. & Karp, J.M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10, 244–258 (2012).

    Article  CAS  Google Scholar 

  19. Korf-Klingebiel, M. et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur. Heart J. 29, 2851–2858 (2008).

    Article  Google Scholar 

  20. Korf-Klingebiel, M. et al. Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction. Circulation 123, 504–514 (2011).

    Article  CAS  Google Scholar 

  21. Urbich, C. et al. Proteomic characterization of human early pro-angiogenic cells. J. Mol. Cell. Cardiol. 50, 333–336 (2011).

    Article  CAS  Google Scholar 

  22. Wollert, K.C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364, 141–148 (2004).

    Article  Google Scholar 

  23. Hofmann, M. et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111, 2198–2202 (2005).

    Article  Google Scholar 

  24. Petit, I., Jin, D. & Rafii, S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 28, 299–307 (2007).

    Article  CAS  Google Scholar 

  25. Seeger, F.H. et al. CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia. Arterioscler. Thromb. Vasc. Biol. 29, 1802–1809 (2009).

    Article  CAS  Google Scholar 

  26. Shantsila, E., Tapp, L.D., Wrigley, B.J., Montoro-Garcia, S. & Lip, G.Y. CXCR4 positive and angiogenic monocytes in myocardial infarction. Thromb. Haemost. 109, 255–262 (2013).

    Article  CAS  Google Scholar 

  27. Kempf, T. et al. The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res. 98, 351–360 (2006).

    Article  CAS  Google Scholar 

  28. Klausner, R.D., Donaldson, J.G. & Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080 (1992).

    Article  CAS  Google Scholar 

  29. Alessi, D.R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551 (1996).

    Article  CAS  Google Scholar 

  30. Tait, S.W. & Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  Google Scholar 

  31. Schust, J., Sperl, B., Hollis, A., Mayer, T.U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. 13, 1235–1242 (2006).

    Article  CAS  Google Scholar 

  32. Klein, E.A. & Assoian, R.K. Transcriptional regulation of the cyclin D1 gene at a glance. J. Cell Sci. 121, 3853–3857 (2008).

    Article  CAS  Google Scholar 

  33. van den Borne, S.W. et al. Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc. Res. 84, 273–282 (2009).

    Article  CAS  Google Scholar 

  34. Roubille, F. et al. Delayed postconditioning in the mouse heart in vivo. Circulation 124, 1330–1336 (2011).

    Article  Google Scholar 

  35. Jay, S.M. & Lee, R.T. Protein engineering for cardiovascular therapeutics: untapped potential for cardiac repair. Circ. Res. 113, 933–943 (2013).

    Article  CAS  Google Scholar 

  36. Grimmond, S.M. et al. The mouse secretome: functional classification of the proteins secreted into the extracellular environment. Genome Res. 13, 1350–1359 (2003).

    Article  CAS  Google Scholar 

  37. Tulin, E.E. et al. SF20/IL-25, a novel bone marrow stroma-derived growth factor that binds to mouse thymic shared antigen-1 and supports lymphoid cell proliferation. J. Immunol. 167, 6338–6347 (2001); retraction 170, 1593 (2003).

    Article  CAS  Google Scholar 

  38. Tulin, E.E. et al. Letter of retraction. J. Immunol. 170, 1593 (2003).

    Article  CAS  Google Scholar 

  39. Wang, P. et al. Profiling of the secreted proteins during 3T3–L1 adipocyte differentiation leads to the identification of novel adipokines. Cell. Mol. Life Sci. 61, 2405–2417 (2004).

    CAS  Google Scholar 

  40. Weiler, T. et al. The identification and characterization of a novel protein, c19orf10, in the synovium. Arthritis Res. Ther. 9, R30 (2007).

    Article  Google Scholar 

  41. Bailey, M.J. et al. Extracellular proteomes of M-CSF (CSF-1) and GM-CSF-dependent macrophages. Immunol. Cell Biol. 89, 283–293 (2011).

    Article  CAS  Google Scholar 

  42. Petersen, T.N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).

    Article  CAS  Google Scholar 

  43. Wen, Z., Zhong, Z. & Darnell, J.E. Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241–250 (1995).

    Article  CAS  Google Scholar 

  44. Decker, T. & Kovarik, P. Serine phosphorylation of STATs. Oncogene 19, 2628–2637 (2000).

    Article  CAS  Google Scholar 

  45. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  Google Scholar 

  46. Swirski, F.K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    Article  CAS  Google Scholar 

  47. Swirski, F.K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  Google Scholar 

  48. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  Google Scholar 

  49. Hilgendorf, I. et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 114, 1611–1622 (2014).

    Article  CAS  Google Scholar 

  50. Heusch, G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381, 166–175 (2013).

    Article  Google Scholar 

  51. Antrobus, R. & Borner, G.H. Improved elution conditions for native co-immunoprecipitation. PLoS ONE 6, e18218 (2011).

    Article  CAS  Google Scholar 

  52. Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971 (2007).

    Article  CAS  Google Scholar 

  53. Pitulescu, M.E., Schmidt, I., Benedito, R. & Adams, R.H. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat. Protoc. 5, 1518–1534 (2010).

    Article  CAS  Google Scholar 

  54. Lim, Y.C. & Luscinskas, F.W. Isolation and culture of murine heart and lung endothelial cells for in vitro model systems. Methods Mol. Biol. 341, 141–154 (2006).

    Google Scholar 

  55. Picotti, P. & Aebersold, R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods 9, 555–566 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the late H. Drexler for his advice during the early stages of this project. We acknowledge L. Arseniev and his team at the Cellular Therapy Center at Hannover Medical School for preparing nucleated bone marrow cells, O. Kustikova from the Institute of Experimental Hematology at Hannover Medical School for helping with the bone marrow transplantations, M. Ballmaier from the FACS core facility and C. Falk from the Institute of Transplant Immunology at Hannover Medical School for supporting us with cell sorting, R. Geffers from the Helmholtz Center for Infection Research (Braunschweig, Germany) for performing the microarray analyses and R. Patten from Tufts New England Medical Center (Boston, MA) for providing Akt1 adenoviruses. We are indebted to our colleagues who recruited patients into the BOOST-2 trial: G. Meyer, J. Pirr and B. Ritter, Hannover Medical School; C. Tschöpe and H. Schultheiß, Charité Berlin; J. Müller-Ehmsen and E. Erdmann, University of Cologne; K. Empen and S. Felix, University of Greifswald; A. May and M. Gawaz, University of Tübingen (all in Germany). The BOOST-2 trial was supported by the German Research Foundation (Programm Klinische Studien) and by the Alfried Krupp von Bohlen und Halbach-Stiftung. K.C.W. was supported by the German Research Foundation (WO 552/9-1, WO 552/10-1, Excellence Cluster REBIRTH-2).

Author information

Authors and Affiliations

Authors

Contributions

M.K.-K., M.R.R., S.K., T.B., A.P., F.P., L.C.N., T.K. and Y.W. designed and carried out experiments and analyzed the data. E.B. and I.R. carried out experiments. H.W.N., J.M., H.-J.S., A.I. and M.B. provided key reagents, tissue samples and experimental protocols. J.B. and A.G. supported the BOOST-2 trial. K.C.W. designed the study, supervised the experiments and wrote the manuscript.

Corresponding author

Correspondence to Kai C Wollert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1–4 (PDF 2564 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korf-Klingebiel, M., Reboll, M., Klede, S. et al. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat Med 21, 140–149 (2015). https://doi.org/10.1038/nm.3778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3778

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research