Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling

Abstract

The hepatic Ashwell-Morell receptor (AMR) can bind and remove desialylated platelets. Here we demonstrate that platelets become desialylated as they circulate and age in blood. Binding of desialylated platelets to the AMR induces hepatic expression of thrombopoietin (TPO) mRNA and protein, thereby regulating platelet production. Endocytic AMR controls TPO expression through Janus kinase 2 (JAK2) and the acute phase response signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro. Recognition of this newly identified physiological feedback mechanism illuminates the pathophysiology of platelet diseases, such as essential thrombocythemia and immune thrombocytopenia, and contributes to an understanding of the mechanisms of thrombocytopenia observed with JAK1/2 inhibition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Ashwell-Morell receptor regulates TPO homeostasis.
Figure 2: JAK2-STAT3 signaling regulates hepatic TPO mRNA and protein expression in vivo.
Figure 3: JAK2-STAT3 signaling regulates TPO mRNA expression in vitro.
Figure 4: Injection of exogenously desialylated platelets stimulates hepatic TPO mRNA expression, TPO release and platelet production in mice.
Figure 5: Antibody-mediated thrombocytopenia does not stimulate liver TPO mRNA expression.

Similar content being viewed by others

References

  1. Kaushansky, K. The molecular mechanisms that control thrombopoiesis. J. Clin. Invest. 115, 3339–3347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaushansky, K. Determinants of platelet number and regulation of thrombopoiesis. Hematology (Am. Soc. Hematol. Educ. Program) 2009, 147–152 (2009).

    Article  Google Scholar 

  3. Kuter, D.J. Thrombopoietin and thrombopoietin mimetics in the treatment of thrombocytopenia. Annu. Rev. Med. 60, 193–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Kuter, D.J. & Rosenberg, R.D. The reciprocal relationship of thrombopoietin (Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit. Blood 85, 2720–2730 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Cohen-Solal, K. et al. Constitutive expression of Mpl ligand transcripts during thrombocytopenia or thrombocytosis. Blood 88, 2578–2584 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Fielder, P.J. et al. Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets. Blood 87, 2154–2161 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Shinjo, K. et al. Serum thrombopoietin levels in patients correlate inversely with platelet counts during chemotherapy-induced thrombocytopenia. Leukemia 12, 295–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Engel, C., Loeffler, M., Franke, H. & Schmitz, S. Endogenous thrombopoietin serum levels during multicycle chemotherapy. Br. J. Haematol. 105, 832–838 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. McCarty, J.M., Sprugel, K., Fox, N., Sabath, D. & Kaushansky, K. Murine thrombopoietin mRNA levels are modulated by platelet count. Blood 86, 3668–3675 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Sungaran, R., Markovic, B. & Chong, B. Localization and regulation of thrombopoietin mRNa expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood 89, 101–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Qian, S., Fu, F., Li, W., Chen, Q. & de Sauvage, F. Primary role of the liver in thrombopoietin production shown by tissue-specific knockout. Blood 92, 2189–2191 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Wolber, E.M., Fandrey, J., Frackowski, U. & Jelkmann, W. Hepatic thrombopoietin mRNA is increased in acute inflammation. Thromb. Haemost. 86, 1421–1424 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. McIntosh, B. & Kaushansky, K. Transcriptional regulation of bone marrow thrombopoietin by platelet proteins. Exp. Hematol. 36, 799–806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolber, E.M. & Jelkmann, W. Interleukin-6 increases thrombopoietin production in human hepatoma cells HepG2 and Hep3B. J. Interferon Cytokine Res. 20, 499–506 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Kaser, A. et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood 98, 2720–2725 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Stone, R.L. et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 366, 610–618 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rumjantseva, V. & Hoffmeister, K.M. Novel and unexpected clearance mechanisms for cold platelets. Transfus. Apher. Sci. 42, 63–70 (2010).

    Article  PubMed  Google Scholar 

  18. Hoffmeister, K.M. The role of lectins and glycans in platelet clearance. J. Thromb. Haemost. 9 (suppl. 1), 35–43 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rumjantseva, V. et al. Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nat. Med. 15, 1273–1280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sørensen, A.L. et al. Role of sialic acid for platelet life span: exposure of β-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor–expressing liver macrophages and hepatocytes. Blood 114, 1645–1654 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Grewal, P.K. et al. Inducing host protection in pneumococcal sepsis by preactivation of the Ashwell-Morell receptor. Proc. Natl. Acad. Sci. USA 110, 20218–20223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grewal, P.K. et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat. Med. 14, 648–655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grewal, P.K. The Ashwell-Morell receptor. Methods Enzymol. 479, 223–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Levine, R.L. & Gilliland, D.G. Myeloproliferative disorders. Blood 112, 2190–2198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. LaFave, L.M. & Levine, R.L. JAK2 the future: therapeutic strategies for JAK-dependent malignancies. Trends Pharmacol. Sci. 33, 574–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Horikawa, Y. et al. Markedly reduced expression of platelet c-mpl receptor in essential thrombocythemia. Blood 90, 4031–4038 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Moliterno, A.R., Hankins, W.D. & Spivak, J.L. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N. Engl. J. Med. 338, 572–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Cohen-Solal, K., Vitrat, N., Titeux, M., Vainchenker, W. & Wendling, F. High-level expression of Mpl in platelets and megakaryocytes is independent of thrombopoietin. Blood 93, 2859–2866 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Karpatkin, S. & Shulman, S. Asialo platelets enhance thrombopoiesis. Trans. Assoc. Am. Physicians 93, 244–250 (1980).

    CAS  PubMed  Google Scholar 

  30. Mason, K.D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Josefsson, E.C. et al. Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. J. Exp. Med. 208, 2017–2031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Debrincat, M.A. et al. Mcl-1 and Bcl-xL co-ordinately regulate megakaryocyte survival. Blood 119, 5850–5858 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, H. et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 14, 943–951 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Rowley, J.W. et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118, e101–e111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Graaf, C.A. & Metcalf, D. Thrombopoietin and hematopoietic stem cells. Cell Cycle 10, 1582–1589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ng, A.P. et al. Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proc. Natl. Acad. Sci. USA 111, 5884–5889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mouthon, M.A., Vandamme, M., Gourmelon, P., Vainchenker, W. & Wendling, F. Preferential liver irradiation enhances hematopoiesis through a thrombopoietin-independent mechanism. Radiat. Res. 152, 390–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Kosugi, S. et al. Circulating thrombopoietin level in chronic immune thrombocytopenic purpura. Br. J. Haematol. 93, 704–706 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Ichikawa, N. et al. Regulation of serum thrombopoietin levels by platelets and megakaryocytes in patients with aplastic anaemia and idiopathic thrombocytopenic purpura. Thromb. Haemost. 76, 156–160 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Hiyoyama, K. et al. Increased serum levels of thrombopoietin in patients with thrombotic thrombocytopenic purpura, idiopathic thrombocytopenic purpura, or disseminated intravascular coagulation. Blood Coagul. Fibrinolysis 8, 345–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, J.C. et al. Blood thrombopoietin levels in clonal thrombocytosis and reactive thrombocytosis. Am. J. Med. 104, 451–455 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Griesshammer, M. et al. High levels of thrombopoietin in sera of patients with essential thrombocythemia: cause or consequence of abnormal platelet production? Ann. Hematol. 77, 211–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Shivdasani, R.A. et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81, 695–704 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Eulenfeld, R. et al. Interleukin-6 signalling: more than Jaks and STATs. Eur. J. Cell Biol. 91, 486–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Fallon, R.J., Danaher, M. & Saxena, A. The asialoglycoprotein receptor is associated with a tyrosine kinase in HepG2 cells. J. Biol. Chem. 269, 26626–26629 (1994).

    CAS  PubMed  Google Scholar 

  46. Park, S.O. et al. Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans. PLoS ONE 8, e59675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grisouard, J., Hao-Shen, H., Dirnhofer, S., Wagner, K.U. & Skoda, R.C. Selective deletion of Jak2 in adult mouse hematopoietic cells leads to lethal anemia and thrombocytopenia. Haematologica 99, e52–e54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jansen, A.J. et al. Desialylation accelerates platelet clearance following refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice. Blood 119, 1263–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoffmeister, K.M. et al. The clearance mechanism of chilled blood platelets. Cell 112, 87–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Grozovsky, R. et al. Type 2 deiodinase expression is induced by peroxisomal proliferator-activated receptor-γ agonists in skeletal myocytes. Endocrinology 150, 1976–1983 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Bergmeier, W. et al. Metalloproteinase inhibitors improve the recovery and hemostatic function of in vitro–aged or –injured mouse platelets. Blood 102, 4229–4235 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Jurak Begonja, A., Hoffmeister, K., Hartwig, J. & Falet, H. FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly. Blood 118, 2285–2295 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Adelman, S. Yang and R. Abdu for technical assistance. We are grateful to M. Sola-Visner and T. Stossel (Harvard Medical School) for helpful discussions and to W. Tong (University of Pennsylvania), for the anti-Mpl antibody. This work was supported by US National Institutes of Health grants R01 HL089224, P01 HL059561 and the Program of Excellence in Glycosciences (P01 HL107146). We thank F. Maigen for statistical guidance and expertise. We dedicate this work to the memory of Gilbert Ashwell (1916–2014) and Anatol Morell (1913–2009).

Author information

Authors and Affiliations

Authors

Contributions

R.G. designed and performed research, collected, analyzed and interpreted results, and assisted with writing the manuscript. A.J.B. analyzed and interpreted results. K.L. performed splenectomy. G.V. interpreted results. J.H.H. analyzed and interpreted results and assisted with writing the manuscript. H.F. and K.M.H. designed research, analyzed and interpreted results, and wrote the manuscript.

Corresponding authors

Correspondence to Hervé Falet or Karin M Hoffmeister.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 7334 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grozovsky, R., Begonja, A., Liu, K. et al. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med 21, 47–54 (2015). https://doi.org/10.1038/nm.3770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing