Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An emerging consensus on cardiac regeneration

Abstract

Cardiac regeneration is a rapidly evolving and controversial field of research. The identification some 12 years ago of progenitor cells that reside within the heart spurred enthusiasm for cell-based regenerative therapies. However, recent evidence has called into question both the presence of a biologically important stem cell population in the heart and the ability of exogenously derived cells to promote regeneration through direct formation of new cardiomyocytes. Here, we discuss recent developments that suggest an emerging consensus on the ability of different cell types to regenerate the adult mammalian heart.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Genetic lineage tracing approaches to assess cardiomyocyte renewal.

Katie Vicari/Nature Publishing Group

References

  1. Rumyantsev, P.P. Growth and Hyperplasia of Cardiac Muscle Cells. (Harwood Academic Publishers, London, 1991).

    Google Scholar 

  2. Soonpaa, M.H. & Field, L.J. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am. J. Physiol. 272, H220–H226 (1997).

    CAS  PubMed  Google Scholar 

  3. Li, F., Wang, X., Capasso, J.M. & Gerdes, A.M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 28, 1737–1746 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Senyo, S.E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Whelan, R.S., Kaplinskiy, V. & Kitsis, R.N. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu. Rev. Physiol. 72, 19–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Kajstura, J. et al. Myocyte proliferation in end-stage cardiac failure in humans. Proc. Natl. Acad. Sci. USA 95, 8801–8805 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beltrami, A.P. et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750–1757 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Porrello, E.R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oberpriller, J.O. & Oberpriller, J.C. Response of the adult newt ventricle to injury. J. Exp. Zool. 187, 249–253 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. Becker, R.O., Chapin, S. & Sherry, R. Regeneration of the ventricular myocardium in amphibians. Nature 248, 145–147 (1974).

    Article  CAS  PubMed  Google Scholar 

  12. Poss, K.D., Wilson, L.G. & Keating, M.T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Aurora, A.B. & Olson, E.N. Immune modulation of stem cells and regeneration. Cell Stem Cell 15, 14–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aurora, A.B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahmoud, A.I. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497, 249–253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Angert, D. et al. Repair of the injured adult heart involves new myocytes potentially derived from resident cardiac stem cells. Circ. Res. 108, 1226–1237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Balsam, L.B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Murry, C.E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Ellison, G.M. et al. Adult c-kitpos cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154, 827–842 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Clifford, D.M. et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst. Rev. 2, CD006536 (2012).

    Google Scholar 

  23. Simari, R.D. et al. Bone marrow mononuclear cell therapy for acute myocardial infarction: a perspective from the cardiovascular cell therapy research network. Circ. Res. 114, 1564–1568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gnecchi, M. et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11, 367–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Beltrami, A.P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ferreira-Martins, J. et al. Cardiomyogenesis in the developing heart is regulated by c-kit–positive cardiac stem cells. Circ. Res. 110, 701–715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaruba, M.M., Soonpaa, M., Reuter, S. & Field, L.J. Cardiomyogenic potential of C-kit+-expressing cells derived from neonatal and adult mouse hearts. Circulation 121, 1992–2000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jesty, S.A. et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc. Natl. Acad. Sci. USA 109, 13380–13385 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA 100, 12313–12318 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uchida, S. et al. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports 1, 397–410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, X., Robin, C., Ottersbach, K. & Dzierzak, E. The Ly-6A (Sca-1) GFP transgene is expressed in all adult mouse hematopoietic stem cells. Stem Cells 20, 514–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Fioret, B.A., Heimfeld, J.D., Paik, D.T. & Hatzopoulos, A.K. Endothelial cells contribute to generation of adult ventricular myocytes during cardiac homeostasis. Cell Reports 8, 229–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Klein, S. et al. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat. Commun. 4, 1630 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Heger, K. et al. CreER(T2) expression from within the c-Kit gene locus allows efficient inducible gene targeting in and ablation of mast cells. Eur. J. Immunol. 44, 296–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. van Berlo, J.H. et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509, 337–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bearzi, C. et al. Identification of a coronary vascular progenitor cell in the human heart. Proc. Natl. Acad. Sci. USA 106, 15885–15890 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goodell, M.A., Brose, K., Paradis, G., Conner, A.S. & Mulligan, R.C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Jackson, K.A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matsuura, K. et al. Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. J. Cell Biol. 167, 351–363 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hierlihy, A.M., Seale, P., Lobe, C.G., Rudnicki, M.A. & Megeney, L.A. The post-natal heart contains a myocardial stem cell population. FEBS Lett. 530, 239–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Martin, C.M. et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol. 265, 262–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Pfister, O. et al. CD31 but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ. Res. 97, 52–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Oyama, T. et al. Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J. Cell Biol. 176, 329–341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noseda, M. et al. PDGFRa demarcates the cardiogenic and clonogenic Sca-1+ stem cell. Cardiovasc. Res. 103 (suppl. 1), S107 (2014).

    Google Scholar 

  45. Wu, S.M., Chien, K.R. & Mummery, C. Origins and fates of cardiovascular progenitor cells. Cell 132, 537–543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cai, C.L. et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5, 877–889 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moretti, A. et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Laugwitz, K.L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smart, N. et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474, 640–644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, B. et al. Thymosin b4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J. Mol. Cell. Cardiol. 52, 43–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Bock-Marquette, I., Saxena, A., White, M.D., Dimaio, J.M. & Srivastava, D. Thymosin b4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432, 466–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Bollini, S. et al. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cells Dev. 23, 1719–1730 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Ali, S.R. et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc. Natl. Acad. Sci. USA 111, 8850–8855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Porrello, E.R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. USA 110, 187–192 (2013).

    Article  PubMed  Google Scholar 

  56. Hsieh, P.C. et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13, 970–974 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Pasumarthi, K.B., Nakajima, H., Nakajima, H.O., Soonpaa, M.H. & Field, L.J. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ. Res. 96, 110–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Sdek, P. et al. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J. Cell Biol. 194, 407–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Engel, F.B., Schebesta, M. & Keating, M.T. Anillin localization defect in cardiomyocyte binucleation. J. Mol. Cell. Cardiol. 41, 601–612 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Hesse, M. et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat. Commun. 3, 1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Mollova, M. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA 110, 1446–1451 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ahuja, P., Sdek, P. & MacLellan, W.R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87, 521–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Senyo, S.E., Lee, R.T. & Kühn, B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res. doi:10.1016/j.scr.2014.09.003 (28 September 2014).

  65. Assmus, B. et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

    Article  PubMed  Google Scholar 

  66. Assmus, B. et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. 355, 1222–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Assmus, B. et al. Long-term clinical outcome after intracoronary application of bone marrow-derived mononuclear cells for acute myocardial infarction: migratory capacity of administered cells determines event-free survival. Eur. Heart J. 35, 1275–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Nowbar, A.N. et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. Br. Med. J. 348, g2688 (2014).

    Article  Google Scholar 

  69. Sanganalmath, S.K. & Bolli, R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ. Res. 113, 810–834 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hong, K.U. et al. c-kit+ cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS ONE 9, e96725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Loffredo, F.S., Steinhauser, M.L., Gannon, J. & Lee, R.T. Bone marrow–derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8, 389–398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hatzistergos, K.E. et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ. Res. 107, 913–922 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Behfar, A., Crespo-Diaz, R., Terzic, A. & Gersh, B.J. Cell therapy for cardiac repair—lessons from clinical trials. Nat. Rev. Cardiol. 11, 232–246 (2014).

    Article  PubMed  Google Scholar 

  74. Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Makkar, R.R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895–904 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Williams, A.R. et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127, 213–223 (2013).

    Article  PubMed  Google Scholar 

  77. Messina, E. et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95, 911–921 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Smith, R.R. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896–908 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mauritz, C. et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118, 507–517 (2008).

    Article  PubMed  Google Scholar 

  81. Narazaki, G. et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118, 498–506 (2008).

    Article  PubMed  Google Scholar 

  82. Kawamura, M. et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell–derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126, S29–S37 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Chong, J.J. et al. Human embryonic-stem-cell–derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Muraoka, N. & Ieda, M. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis. Annu. Rev. Physiol. 76, 21–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Jayawardena, T.M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Protze, S. et al. A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J. Mol. Cell. Cardiol. 53, 323–332 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Islas, J.F. et al. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc. Natl. Acad. Sci. USA 109, 13016–13021 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nam, Y.J. et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc. Natl. Acad. Sci. USA 110, 5588–5593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wada, R. et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc. Natl. Acad. Sci. USA 110, 12667–12672 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fu, J.D. et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports 1, 235–247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mathison, M. et al. In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J. Am. Heart Assoc. 1, e005652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Okano, H. et al. Steps toward safe cell therapy using induced pluripotent stem cells. Circ. Res. 112, 523–533 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Anderson, M.E., Goldhaber, J., Houser, S.R., Puceat, M. & Sussman, M.A. Embryonic stem cell–derived cardiac myocytes are not ready for human trials. Circ. Res. 115, 335–338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ohnishi, K. et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156, 663–677 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Zhao, T., Zhang, Z.N., Rong, Z. & Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature 474, 212–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Robertson, N.J. et al. Embryonic stem cell–derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc. Natl. Acad. Sci. USA 104, 20920–20925 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Herget, G.W., Neuburger, M., Plagwitz, R. & Adler, C.P. DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc. Res. 36, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Soonpaa, M.H. et al. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J. Clin. Invest. 99, 2644–2654 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ang, K.L. et al. Limitations of conventional approaches to identify myocyte nuclei in histologic sections of the heart. Am. J. Physiol. Cell Physiol. 298, C1603–C1609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (to J.H.v.B and J.D.M.). J.D.M. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jop H van Berlo or Jeffery D Molkentin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Berlo, J., Molkentin, J. An emerging consensus on cardiac regeneration. Nat Med 20, 1386–1393 (2014). https://doi.org/10.1038/nm.3764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing