Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations

Abstract

The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Genetics and pedigrees of families with CTLA4 mutations.
Figure 2: Tissue infiltration and lymphadenopathy in patients with CTLA4 mutations.
Figure 3: Impact of CTLA4 heterozygosity on T and B cells.
Figure 4: Impaired transendocytosis, ligand binding and Treg suppressive activity in CTLA4 heterozygotes.

References

  1. Bacchetta, R. & Notarangelo, L.D. Immunodeficiency with autoimmunity: beyond the paradox. Front. Immunol. 4, 77 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Herz, W. et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 5, 162 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Resnick, E.S. & Cunningham-Rundles, C. The many faces of the clinical picture of common variable immune deficiency. Curr. Opin. Allergy Clin. Immunol. 12, 595–601 (2012).

    PubMed  Google Scholar 

  4. Yong, P.F., Thaventhiran, J.E. & Grimbacher, B. “A rose is a rose is a rose,” but CVID is Not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv. Immunol. 111, 47–107 (2011).

    CAS  PubMed  Google Scholar 

  5. Gathmann, B. et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 134, 116–126 (2014).

    PubMed  Google Scholar 

  6. Chen, K. et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodeficiency. Am. J. Hum. Genet. 93, 812–824 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jou, S.T. et al. Identification of variations in the human phosphoinositide 3-kinase p110delta gene in children with primary B-cell immunodeficiency of unknown aetiology. Int. J. Immunogenet. 33, 361–369 (2006).

    CAS  PubMed  Google Scholar 

  8. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  9. Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    CAS  PubMed  Google Scholar 

  10. Ochs, H.D., Ziegler, S.F. & Torgerson, T.R. FOXP3 acts as a rheostat of the immune response. Immunol. Rev. 203, 156–164 (2005).

    CAS  PubMed  Google Scholar 

  11. Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  12. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  13. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  14. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    CAS  PubMed  Google Scholar 

  15. Friedline, R.H. et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J. Exp. Med. 206, 421–434 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Walker, L.S. Treg and CTLA-4: two intertwining pathways to immune tolerance. J. Autoimmun. 45, 49–57 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  20. Rudd, C.E. The reverse stop-signal model for CTLA4 function. Nat. Rev. Immunol. 8, 153–160 (2008).

    CAS  PubMed  Google Scholar 

  21. Walker, L.S. & Sansom, D.M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 11, 852–863 (2011).

    CAS  PubMed  Google Scholar 

  22. Wing, K., Yamaguchi, T. & Sakaguchi, S. Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends Immunol. 32, 428–433 (2011).

    CAS  PubMed  Google Scholar 

  23. Bachmann, M.F., Kohler, G., Ecabert, B., Mak, T.W. & Kopf, M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol. 163, 1128–1131 (1999).

    CAS  PubMed  Google Scholar 

  24. Homann, D. et al. Lack of intrinsic CTLA-4 expression has minimal effect on regulation of antiviral T-cell immunity. J. Virol. 80, 270–280 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Qureshi, O.S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Collins, A.V. et al. The interaction properties of costimulatory molecules revisited. Immunity 17, 201–210 (2002).

    CAS  PubMed  Google Scholar 

  27. Bour-Jordan, H. & Bluestone, J.A. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol. Rev. 229, 41–66 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Keir, M.E. & Sharpe, A.H. The B7/CD28 costimulatory family in autoimmunity. Immunol. Rev. 204, 128–143 (2005).

    CAS  PubMed  Google Scholar 

  29. Chambers, C.A. et al. The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol. Rev. 153, 27–46 (1996).

    CAS  PubMed  Google Scholar 

  30. Schmidt, E.M. et al. Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J. Immunol. 182, 274–282 (2009).

    CAS  PubMed  Google Scholar 

  31. Schwartz, J.C., Zhang, X., Fedorov, A.A., Nathenson, S.G. & Almo, S.C. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 410, 604–608 (2001).

    CAS  PubMed  Google Scholar 

  32. Sansom, D.M. & Walker, L.S. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol. Rev. 212, 131–148 (2006).

    CAS  PubMed  Google Scholar 

  33. Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tabares, P. et al. Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08. Eur. J. Immunol. 44, 1225–1236 (2014).

    CAS  PubMed  Google Scholar 

  35. Vincenti, F. et al. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med. 353, 770–781 (2005).

    CAS  PubMed  Google Scholar 

  36. Parkes, M., Cortes, A., van Heel, D.A. & Brown, M.A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    CAS  PubMed  Google Scholar 

  37. Barzaghi, F., Passerini, L. & Bacchetta, R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front. Immunol. 3, 211 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Riewaldt, J. et al. Severe developmental B lymphopoietic defects in Foxp3-deficient mice are refractory to adoptive regulatory T cell therapy. Front Immunol. 3, 141 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Walker, L.S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115–1122 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Angulo, I. et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science 342, 866–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lucas, C.L. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat. Immunol. 15, 88–97 (2014).

    CAS  PubMed  Google Scholar 

  42. Boomer, J.S. & Green, J.M. An enigmatic tail of CD28 signaling. Cold Spring Harb. Perspect. Biol. 2, a002436 (2010).

    PubMed  PubMed Central  Google Scholar 

  43. Kuehn, H.S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Atzeni, F. et al. Long-term safety of abatacept in patients with rheumatoid arthritis. Autoimmun. Rev. 12, 1115–1117 (2013).

    CAS  PubMed  Google Scholar 

  45. Wofsy, D., Hillson, J.L. & Diamond, B. Abatacept for lupus nephritis: alternative definitions of complete response support conflicting conclusions. Arthritis Rheum. 64, 3660–3665 (2012).

    CAS  PubMed  Google Scholar 

  46. Braig, D.U. et al. Linkage of autosomal dominant common variable immunodeficiency to chromosome 5p and evidence for locus heterogeneity. Hum. Genet. 112, 369–378 (2003).

    CAS  PubMed  Google Scholar 

  47. Cottingham, R.W. Jr., Idury, R.M. & Schaffer, A.A. Faster sequential genetic linkage computations. Am. J. Hum. Genet. 53, 252–263 (1993).

    PubMed  PubMed Central  Google Scholar 

  48. Lathrop, G.M. & Lalouel, J.M. Easy calculations of lod scores and genetic risks on small computers. Am. J. Hum. Genet. 36, 460–465 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schäffer, A.A., Gupta, S.K., Shriram, K. & Cottingham, R.W. Jr. Avoiding recomputation in linkage analysis. Hum. Hered. 44, 225–237 (1994).

    PubMed  Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    CAS  Google Scholar 

  54. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Abbas, A.R. et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 6, 319–331 (2005).

    CAS  PubMed  Google Scholar 

  56. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ehl, S. et al. A variant of SCID with specific immune responses and predominance of gamma delta T cells. J. Clin. Invest. 115, 3140–3148 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. van Dongen, J.J. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17, 2257–2317 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and their relatives for their participation in this study. We thank F. Atschekzei, S. Kock, A. Gaa, S. Glatzel and M. Stenzel for technical assistance, and D. Comtesse, R. Weinert, R. Wieland, M. Schüler and N. Verma for their excellent and dedicated patient care. This research was funded by the Bundesministerium für Bildung und Forschung with the following grants: Integriertes Forschungs und Behandlungszentrum/Center for Chronic Immunodeficiencies 01EO1303, Systems Biology E:med/SysInflame: 012X1306F; the Deutsches Zentrum für Infektionsforschung #8000805-3 and in part by the Excellence Initiative of the German Research Foundation (GSC-4, Spemann Graduate School) and by the Intramural Research Program of the US National Institutes of Health, National Library of Medicine. We also thank the German Crohn's and Colitis Foundation for support of the exome sequencing and the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence “Inflammation at Interfaces.” B.A.G. is funded by the DFG CRC 992 Medical Epigenetics, L.S.K.W. by a UK Medical Research Council Senior Fellowship, T.Z.H. by the Wellcome Trust, R.K. by Diabetes UK, J.B.W. by a Japan Society for the Promotion of ScienceYoung Scientist B grant and S.S. by the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Contributions

D.S. conceived and performed experiments, analyzed and interpreted the data, and co-wrote the manuscript. C.B. performed experiments and analyzed the data. R.K. designed and performed CTLA-4 staining and transendocytosis experiments, and analyzed the data. T.Z.H. designed and performed Treg cell suppression assays, and analyzed the data. J.B.W. conceived and performed the mouse experiments, and interpreted the data. A.K. performed cloning, mutagenesis, transfection and microscopy. A.B., B.-S.P. and B.A.G. analyzed whole-exome sequencing data, A.A.S. analyzed the linkage analysis data, and S.U. performed experiments and analyzed the data. N.F. managed patients, and analyzed next-generation sequencing data. U.B., T.W., R.E.S., G.D., T.N., S. Seneviratne, M.K., C.S., S.E., R.T., P.H. and U.S. managed patients and provided the clinical data and patient's material, A.R.-E., K.W., M.R., F.E., T.C., R.B., P.F., M.S., A.M. and A.S.-G. designed and interpreted experiments. S.I. performed crystallographic modeling. A.F. and S. Sakaguchi conceived, designed and interpreted experiments. L.S.K.W. and D.M.S. conceived, designed and interpreted experiments and co-wrote the manuscript. B.G. managed patients, conceived and interpreted experiments, and co-wrote the manuscript.

Corresponding author

Correspondence to Bodo Grimbacher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2 and Supplementary Notes 1 and 2 (PDF 1210 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schubert, D., Bode, C., Kenefeck, R. et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20, 1410–1416 (2014). https://doi.org/10.1038/nm.3746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing