Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia

Subjects

Abstract

A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength1,2. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia3,4. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduction in satellite cell content throughout the lifespan does not appear to affect mean myofiber CSA.
Figure 2: Reduction in satellite cell content leads to impaired regenerative capacity but does not appear to accelerate or exacerbate sarcopenia.
Figure 3: Age-associated fiber type–specific atrophy appears unaffected by reduction in satellite cell content.
Figure 4: Satellite cell content does not appear to affect plantaris myofiber or myonuclear number or single-fiber force production but contributes to ECM accumulation.

References

  1. Bortz, W.M. II. A conceptual framework of frailty: a review. J. Gerontol. A Biol. Sci. Med. Sci. 57, M283–M288 (2002).

    Article  PubMed  Google Scholar 

  2. Mitchell, W.K. et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 3, 260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. García-Prat, L., Sousa-Victor, P. & Muñoz-Cánoves, P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J. 280, 4051–4062 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Gopinath, S.D. & Rando, T.A. Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7, 590–598 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Topinková, E. Aging, disability and frailty. Ann. Nutr. Metab. 52 (suppl. 1), 6–11 (2008).

    PubMed  Google Scholar 

  6. Walston, J. et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J. Am. Geriatr. Soc. 54, 991–1001 (2006).

    Article  PubMed  Google Scholar 

  7. Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Collins, C.A., Zammit, P.S., Ruiz, A.P., Morgan, J.E. & Partridge, T.A. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25, 885–894 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Shefer, G., Van de Mark, D.P., Richardson, J.B. & Yablonka-Reuveni, Z. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev. Biol. 294, 50–66 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chakkalakal, J.V., Jones, K.M., Basson, M.A. & Brack, A.S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernet, J.D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brack, A.S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Carlson, M.E. & Conboy, I.M. Loss of stem cell regenerative capacity within aged niches. Aging Cell 6, 371–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Conboy, I.M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Cosgrove, B.D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McKay, B.R. et al. Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. Am. J. Physiol. Cell Physiol. 304, C717–C728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shefer, G., Rauner, G., Yablonka-Reuveni, Z. & Benayahu, D. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS ONE 5, e13307 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Fry, C.S. et al. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J. 28, 1654–1665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jackson, J.R. et al. Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy. Am. J. Physiol. Cell Physiol. 303, C854–C861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCarthy, J.J. et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138, 3657–3666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lepper, C., Partridge, T.A. & Fan, C.M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639–3646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murphy, M.M., Lawson, J.A., Mathew, S.J., Hutcheson, D.A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625–3637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sambasivan, R. et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138, 3647–3656 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Baumgartner, R.N. et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 147, 755–763 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Larsson, L. Motor units—remodeling in aged animals. J. Gerontol. A Biol. Sci. Med. Sci. 50, 91–95 (1995).

    PubMed  Google Scholar 

  27. Brack, A.S., Bildsoe, H. & Hughes, S.M. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J. Cell Sci. 118, 4813–4821 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, F., Hedstrom, M., Cristea, A., Dalen, N. & Larsson, L. Effects of ageing and gender on contractile properties in human skeletal muscle and single fibres. Acta Physiol. (Oxf.) 190, 229–241 (2007).

    Article  CAS  Google Scholar 

  29. Sinaki, M., Nwaogwugwu, N.C., Phillips, B.E. & Mokri, M. Effect of gender, age, and anthropometry on axial and appendicular muscle strength. Am. J. Phys. Med. Rehabil. 80, 330–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Shephard, R.J., Montelpare, W., Plyley, M., McCracken, D. & Goode, R.C. Handgrip dynamometry, Cybex measurements and lean mass as markers of the ageing of muscle function. Br. J. Sports Med. 25, 204–208 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morrison, J., Lu, Q.L., Pastoret, C., Partridge, T. & Bou-Gharios, G. T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab. Invest. 80, 881–891 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Dor, Y., Brown, J., Martinez, O.I. & Melton, D.A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Humphreys, B.D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Miyaoka, Y. et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 22, 1166–1175 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Teta, M., Rankin, M.M., Long, S.Y., Stein, G.M. & Kushner, J.A. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev. Cell 12, 817–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Jones, D.A. et al. Moderate leisure-time physical activity: who is meeting the public health recommendations? A national cross-sectional study. Arch. Fam. Med. 7, 285–289 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Law, P.K. et al. Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplant. 1, 235–244 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. He, W.A. et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J. Clin. Invest. 123, 4821–4835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bareja, A. & Billin, A.N. Satellite cell therapy—from mice to men. Skelet. Muscle 3, 2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nishijo, K. et al. Biomarker system for studying muscle, stem cells, and cancer in vivo. FASEB J. 23, 2681–2690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mula, J., Lee, J.D., Liu, F., Yang, L. & Peterson, C.A. Automated image analysis of skeletal muscle fiber cross-sectional area. J. Appl. Physiol. 114, 148–155 (2013).

    Article  PubMed  Google Scholar 

  42. Liu, F. et al. Automated fiber-type-specific cross-sectional area assessment and myonuclei counting in skeletal muscle. J. Appl. Physiol. 115, 1714–1724 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mendias, C.L., Kayupov, E., Bradley, J.R., Brooks, S.V. & Claflin, D.R. Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation. J. Appl. Physiol. 111, 185–191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Lawson and K. Campbell (University of Kentucky Center for Muscle Biology) and S. Roche (University of Michigan) for technical assistance on single-fiber functional analyses; H. Bush and C. Starnes for biostatistics expertise; T. Chaillou for assistance with muscle regeneration experiments; A. Confides for assistance with grip-strength testing; and M. Ubele, R. Erfani, J. Beggs, M. Campbell, T. Kmiec, J. Werker, R. Anglin and Z. Hardyniec for image acquisition and quantification. Research was supported by the Jeane B. Kempner Postdoctoral Scholar Award and US National Institutes of Health (NIH) grant AR065337 to C.S.F.; Ellison Medical Foundation/American Federation of Aging Research (AFAR) Fellowship EPD 12102 to J.D.L.; NIH grants AG34453 to C.A.P., AG043721 to E.E.D.-V. and AR60701 to C.A.P. and J.J.M.; and the NIH National Center for Advancing Translational Sciences Award UL1TR000117. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or AFAR.

Author information

Authors and Affiliations

Authors

Contributions

C.S.F., J.D.L., J.J.M. and C.A.P. designed the study. C.S.F., J.D.L., J.M., T.J.K., J.R.J. and C.L.M. performed experiments and collected the data. C.S.F., J.D.L., J.M., F.L., L.Y., C.L.M. and E.E.D.-V. analyzed the data. C.S.F., J.J.M. and C.A.P. wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Charlotte A Peterson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1910 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fry, C., Lee, J., Mula, J. et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21, 76–80 (2015). https://doi.org/10.1038/nm.3710

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3710

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing