Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge


Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Macaque survival, plasma viremia and immune responses for acute studies.
Figure 2: Immune responses and challenge outcomes in ChAd single-shot and prime-boost durability studies.

Accession codes

Primary accessions



  1. Sullivan, N.J., Sanchez, A., Rollin, P.E., Yang, Z.Y. & Nabel, G.J. Nature 408, 605–609 (2000).

    CAS  Article  Google Scholar 

  2. Shiver, J.W. et al. Nature 415, 331–335 (2002).

    CAS  Article  Google Scholar 

  3. Brown, S.A. et al. Viruses 2, 435–467 (2010).

    CAS  Article  Google Scholar 

  4. Ledgerwood, J.E. et al. Vaccine 29, 304–313 (2010).

    CAS  Article  Google Scholar 

  5. Barnes, E. et al. Sci. Transl. Med. 4, 115ra1 (2012).

    Article  Google Scholar 

  6. Quinn, K.M. et al. J. Immunol. 190, 2720–2735 (2013).

    CAS  Article  Google Scholar 

  7. Sullivan, N.J. et al. Nat. Med. 17, 1128–1131 (2011).

    CAS  Article  Google Scholar 

  8. Geisbert, T.W. et al. J. Virol. 85, 4222–4233 (2011).

    CAS  Article  Google Scholar 

  9. Barouch, D.H. et al. J. Immunol. 172, 6290–6297 (2004).

    CAS  Article  Google Scholar 

  10. Colloca, S. et al. Sci. Transl. Med. 4, 115ra2 (2012).

    Article  Google Scholar 

  11. Kobinger, G.P. et al. Virology 346, 394–401 (2006).

    CAS  Article  Google Scholar 

  12. Reyes-Sandoval, A. et al. Infect. Immun. 78, 145–153 (2010).

    CAS  Article  Google Scholar 

  13. O'Hara, G.A. et al. J. Infect. Dis. 205, 772–781 (2012).

    CAS  Article  Google Scholar 

  14. Sheehy, S.H. et al. Mol. Ther. 20, 2355–2368 (2012).

    CAS  Article  Google Scholar 

  15. Mire, C.E. et al. PLoS ONE 9, e94355 (2014).

    Article  Google Scholar 

  16. Sullivan, N.J. et al. PLoS Med. 3, e177 (2006).

    Article  Google Scholar 

  17. Sullivan, N.J., Martin, J.E., Graham, B.S. & Nabel, G.J. Nat. Rev. Microbiol. 7, 393–400 (2009).

    CAS  Article  Google Scholar 

  18. Seder, R.A., Darrah, P.A. & Roederer, M. Nat. Rev. Immunol. 8, 247–258 (2008).

    CAS  Article  Google Scholar 

  19. Lichterfeld, M. et al. Blood 104, 487–494 (2004).

    CAS  Article  Google Scholar 

  20. Hensley, L.E. et al. PLoS Pathog. 6, e1000904 (2010).

    Article  Google Scholar 

  21. Darrah, P.A. et al. Nat. Med. 13, 843–850 (2007).

    CAS  Article  Google Scholar 

  22. Geisbert, T.W. et al. J. Virol. 84, 10386–10394 (2010).

    CAS  Article  Google Scholar 

  23. Di Lullo, G. et al. J. Virol. Methods 163, 195–204 (2010).

    CAS  Article  Google Scholar 

  24. Chartier, C. et al. J. Virol. 70, 4805–4810 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Roederer, M., Nozzi, J.L. & Nason, M.C. Cytometry A. 79, 167–174 (2011).

    Article  Google Scholar 

  26. Malhotra, S. et al. PLoS Negl. Trop. Dis. 7, e2171 (2013).

    CAS  Article  Google Scholar 

Download references


We thank M. Cichanowski for graphics, A. Tislerics and B. Hartman for assistance with the manuscript and R. Seder for review and helpful suggestions. S. Perfetto and S. Norris and D. Follmann for technical discussions, and the Vaccine Research Center's Nonhuman Primate Immunogenicity Core for NHP sample processing. We thank the Vaccine Research Center Laboratory Animal Medicine, S. Rao, A. Taylor, J.P. Todd and H. Bao for protocol support and the NIH Division of Veterinary Resources for animal care. We also thank H. Esham for technical assistance and data management and D. Alves for pathology assistance. TPG shuttle vector was provided by A. Siccardi (Istituto San Raffaele). This work was supported by the Intramural Research Program of the US NIH NIAID Vaccine Research Center. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the US Army or the US Department of Defense.

Author information

Authors and Affiliations



D.A.S., C.A., G.J.N., J.M., R.A.K. and N.J.S. designed these studies. D.A.S., A.N.H., C.A., J.C.T. and N.J.S. wrote animal study protocols and executed in vivo studies. D.A.S., C.A., A.W.L.-K., K.E.F., M.M.D. and M.R. conducted immune assessments. A.N.H., J.C.T., J.C.J. and L.H. executed challenge studies and performed post-challenge assays. V.A., A.A., F.G., C.C. and L.W. constructed, produced and characterized vectors. S.C., A.F., A.N. and R.C. identified chimp adenoviruses.

Corresponding author

Correspondence to Nancy J Sullivan.

Ethics declarations

Competing interests

N.J.S., G.J.N., S.C., A.F., A.N. and R.C. claim intellectual property on gene-based vaccines for ebolavirus. S. C. and A.N. are named inventors in patents issued in the US Patent and Trademark Office and European, Australian, Chinese, Indian,and Japanese Patent Offices, and pending in the Canadian and Hong Kong Patent Offices, on chimpanzee adenovirus 3 (ChAd3). S. C., A.N, V.A. and R.C. are named inventors in a patent application with patents pending with the US Patent and Trademark Office and European Patent Office on filovirus vaccine.

Supplementary information

Supplementary Figure

Supplementary Figure 1 (PDF 285 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stanley, D., Honko, A., Asiedu, C. et al. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nat Med 20, 1126–1129 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing