Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Niclosamide ethanolamine–induced mild mitochondrial uncoupling improves diabetic symptoms in mice

Subjects

Abstract

Type 2 diabetes (T2D) has reached an epidemic level globally. Most current treatments ameliorate the hyperglycemic symptom of the disease but are not effective in correcting its underlying cause. One important causal factor of T2D is ectopic accumulation of lipids in metabolically sensitive organs such as liver and muscle. Mitochondrial uncoupling, which reduces cellular energy efficiency and increases lipid oxidation, is an appealing therapeutic strategy. The challenge, however, is to discover safe mitochondrial uncouplers for practical use. Niclosamide is an anthelmintic drug approved by the US Food and Drug Administration that uncouples the mitochondria of parasitic worms. Here we show that niclosamide ethanolamine salt (NEN) uncouples mammalian mitochondria at upper nanomolar concentrations. Oral NEN increases energy expenditure and lipid metabolism in mice. It is also efficacious in preventing and treating hepatic steatosis and insulin resistance induced by a high-fat diet. Moreover, it improves glycemic control and delays disease progression in db/db mice. Given the well-documented safety profile of NEN, our study provides a potentially new and practical pharmacological approach for treating T2D.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NEN uncouples mitochondrial respiration and affects mouse energy metabolism.
Figure 2: Oral NEN is effective in preventing and treating HFD-induced insulin resistance.
Figure 3: Oral NEN improves glycemic control in db/db mice.
Figure 4: Oral NEN is effective in preventing and reducing HFD-induced hepatic steatosis in mice.
Figure 5: Effect of NEN on cellular metabolism.

Similar content being viewed by others

References

  1. Boyle, J.P., Thompson, T.J., Gregg, E.W., Barker, L.E. & Williamson, D.F. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr. 8, 29 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. US Center for Disease Control and Prevention. National diabetes statistics report, 2014. Diabetes Public Health Resource http://www.cdc.gov/diabetes/pubs/statsreport14.htm (2014).

  3. Qaseem, A., Humphrey, L.L., Sweet, D.E., Starkey, M. & Shekelle, P. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 156, 218–231 (2012).

    PubMed  Google Scholar 

  4. Nathan, D.M., et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32, 193–203 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kahn, S.E., Hull, R.L. & Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    CAS  PubMed  Google Scholar 

  6. Muoio, D.M. & Newgard, C.B. Obesity-related derangements in metabolic regulation. Annu. Rev. Biochem. 75, 367–401 (2006).

    CAS  PubMed  Google Scholar 

  7. Randle, P.J. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab. Rev. 14, 263–283 (1998).

    CAS  PubMed  Google Scholar 

  8. Samuel, V.T., Petersen, K.F. & Shulman, G.I. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375, 2267–2277 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. An, J. et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat. Med. 10, 268–274 (2004).

    CAS  PubMed  Google Scholar 

  10. Chavez, J.A. & Summers, S.A. A ceramide-centric view of insulin resistance. Cell Metab. 15, 585–594 (2012).

    CAS  PubMed  Google Scholar 

  11. Griffin, M.E. et al. Free fatty acid–induced insulin resistance is associated with activation of protein kinase Cθ and alterations in the insulin signaling cascade. Diabetes 48, 1270–1274 (1999).

    CAS  PubMed  Google Scholar 

  12. Holland, W.L. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat–, and obesity-induced insulin resistance. Cell Metab. 5, 167–179 (2007).

    CAS  PubMed  Google Scholar 

  13. Samuel, V.T. & Shulman, G.I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  Google Scholar 

  15. Pelleymounter, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    CAS  PubMed  Google Scholar 

  16. Uysal, K.T., Wiesbrock, S.M., Marino, M.W. & Hotamisligil, G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    CAS  PubMed  Google Scholar 

  17. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    CAS  PubMed  Google Scholar 

  18. Steppan, C.M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    CAS  PubMed  Google Scholar 

  19. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673–1677 (2001).

    CAS  PubMed  Google Scholar 

  20. Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005).

    CAS  PubMed  Google Scholar 

  21. Henry, R.R., Wallace, P. & Olefsky, J.M. Effects of weight loss on mechanisms of hyperglycemia in obese non–insulin-dependent diabetes mellitus. Diabetes 35, 990–998 (1986).

    CAS  PubMed  Google Scholar 

  22. Kantartzis, K. et al. High cardiorespiratory fitness is an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut 58, 1281–1288 (2009).

    CAS  PubMed  Google Scholar 

  23. Perseghin, G. et al. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N. Engl. J. Med. 335, 1357–1362 (1996).

    CAS  PubMed  Google Scholar 

  24. Petersen, K.F. et al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54, 603–608 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Terada, H. Uncouplers of oxidative phosphorylation. Environ. Health Perspect. 87, 213–218 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nedergaard, J., Ricquier, D. & Kozak, L.P. Uncoupling proteins: current status and therapeutic prospects. EMBO Rep. 6, 917–921 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Si, Y., Shi, H. & Lee, K. Metabolic flux analysis of mitochondrial uncoupling in 3T3–L1 adipocytes. PLoS ONE 4, e7000 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Tseng, Y.H., Cypess, A.M. & Kahn, C.R. Cellular bioenergetics as a target for obesity therapy. Nat. Rev. Drug Discov. 9, 465–482 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Harper, J.A., Dickinson, K. & Brand, M.D. Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes. Rev. 2, 255–265 (2001).

    CAS  PubMed  Google Scholar 

  30. Harper, M.E., Green, K. & Brand, M.D. The efficiency of cellular energy transduction and its implications for obesity. Annu. Rev. Nutr. 28, 13–33 (2008).

    CAS  PubMed  Google Scholar 

  31. Clapham, J.C. et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406, 415–418 (2000).

    CAS  PubMed  Google Scholar 

  32. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L.P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914–2923 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, B. et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat. Med. 6, 1115–1120 (2000).

    CAS  PubMed  Google Scholar 

  34. Neschen, S. et al. Uncoupling protein 1 expression in murine skeletal muscle increases AMPK activation, glucose turnover, and insulin sensitivity in vivo. Physiol. Genomics 33, 333–340 (2008).

    CAS  PubMed  Google Scholar 

  35. Ishigaki, Y. et al. Dissipating excess energy stored in the liver is a potential treatment strategy for diabetes associated with obesity. Diabetes 54, 322–332 (2005).

    CAS  PubMed  Google Scholar 

  36. Choi, C.S. et al. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J. Clin. Invest. 117, 1995–2003 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Amara, C.E. et al. Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc. Natl. Acad. Sci. USA 104, 1057–1062 (2007).

    CAS  PubMed  Google Scholar 

  38. Maragos, W.F. & Korde, A.S. Mitochondrial uncoupling as a potential therapeutic target in acute central nervous system injury. J. Neurochem. 91, 257–262 (2004).

    CAS  PubMed  Google Scholar 

  39. Mattiasson, G. et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat. Med. 9, 1062–1068 (2003).

    CAS  PubMed  Google Scholar 

  40. Parascandola, J. Dinitrophenol and bioenergetics: an historical perspective. Mol. Cell. Biochem. 5, 69–77 (1974).

    CAS  PubMed  Google Scholar 

  41. Perry, R.J. et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 18, 740–748 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Frayha, G.J., Smyth, J.D., Gobert, J.G. & Savel, J. The mechanisms of action of antiprotozoal and anthelmintic drugs in man. Gen. Pharmacol. 28, 273–299 (1997).

    CAS  PubMed  Google Scholar 

  43. Sheth, U.K. Mechanisms of anthelmintic action. Prog. Drug Res. 19, 147–157 (1975).

    CAS  PubMed  Google Scholar 

  44. Weinbach, E.C. & Garbus, J. Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature 221, 1016–1018 (1969).

    CAS  PubMed  Google Scholar 

  45. Andrews, P., Thyssen, J. & Lorke, D. The biology and toxicology of molluscicides, Bayluscide. Pharmc. Ther. 19, 245–295 (1982).

    CAS  Google Scholar 

  46. Hecht, G. & Gloxhuber, C. Tolerance to 2′,5-dichloro-4-nitrosalicylanilide ethanolamine salt. Z. Tropenmed. Parasitol. 13, 1–8 (1962).

    CAS  PubMed  Google Scholar 

  47. Owen, M.R., Doran, E. & Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Misbin, R.I. et al. Lactic acidosis in patients with diabetes treated with metformin. N. Engl. J. Med. 338, 265–266 (1998).

    CAS  PubMed  Google Scholar 

  49. Kobayashi, K. et al. The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism 49, 22–31 (2000).

    CAS  PubMed  Google Scholar 

  50. Samuel, V.T. et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345–32353 (2004).

    CAS  PubMed  Google Scholar 

  51. Fryer, L.G., Parbu-Patel, A. & Carling, D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J. Biol. Chem. 277, 25226–25232 (2002).

    CAS  PubMed  Google Scholar 

  52. Inoki, K., Zhu, T. & Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  53. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, M. et al. The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry 48, 10267–10274 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Osada, T. et al. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res. 71, 4172–4182 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ren, X. et al. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Med. Chem. Lett. 1, 454–459 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fullerton, M.D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Madiraju, A.K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hollingworth, R.M. in Handbook of Pesticide Toxicology Vol. 2, 2nd edn. (ed. Krieger, R.) 1225–1247 (Academic Press, San Diego, California, 2001).

  60. Swan, G.E. The pharmacology of halogenated salicylanilides and their anthelmintic use in animals. J. S. Afr. Vet. Assoc. 70, 61–70 (1999).

    CAS  PubMed  Google Scholar 

  61. Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287–295 (2007).

    CAS  PubMed  Google Scholar 

  62. Trounce, I.A., Kim, Y.L., Jun, A.S. & Wallace, D.C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 264, 484–509 (1996).

    CAS  PubMed  Google Scholar 

  63. Muoio, D.M., Seefeld, K., Witters, L.A. & Coleman, R.A. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem. J. 338, 783–791 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl. Acad. Sci. USA 106, 19860–19865 (2009).

    CAS  PubMed  Google Scholar 

  65. Prince, A., Zhang, Y., Croniger, C. & Puchowicz, M. Oxidative metabolism: glucose versus ketones. Adv. Exp. Med. Biol. 789, 323–328 (2013).

    CAS  PubMed  Google Scholar 

  66. Chang, Y.-W. et al. Pharmacokinetics of anti–SARS-CoV agent niclosamide and its analogs in rats. J. Food Drug Anal. 14, 329–333 (2006).

    CAS  Google Scholar 

  67. Kim, H.J. et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060–1067 (2004).

    CAS  PubMed  Google Scholar 

  68. Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Kahn at the Yale University School of Medicine for the analysis of hepatocellular DAG and ceramide contents. We thank the US National Mouse Metabolic Phenotyping Centers (MMPC) at various sites for the various metabolic studies: C. Croniger and L. Wang at Case Western Reserve University (U24 DK076174) for the metabolic cage experiments; J. Kim and D.Y. Jung at the University of Massachusetts (U24 DK093000) for the hyperinsulinemic-euglycemic clamp studies and glycogen synthesis rate determination; and S.S. Wirth and J. Graham at University of California, Davis (U24 DK092993) for determination of glycated hemoglobin (HbA1c) in db/db mice. We also thank W. Hu and Y. Zhao at Rutgers University for assistance with the quantitative real-time PCR analyses and R. Patel at the Rutgers Core Facility for technical assistance with electron microscopy studies. H.T., Y.Z., X.Z. and S.J. are supported by the US National Institutes of Health (R01AG030081 and R01CA116088) and Mito Biopharm, LLC. G.I.S. is supported by the US National Institutes of Health (R24 DK085638, P30 DK45735 and U24 DK059635) and the Novo Nordisk Foundation for Basic Metabolic Research.

Author information

Authors and Affiliations

Authors

Contributions

H.T. and S.J. designed the experiments, analyzed the data and wrote the manuscript. H.T. conducted most of the experiments. Y.Z. conducted the mitochondrial oxygen consumption assay and contributed to the quantitative PCR analyses and other in vivo studies. X.Z. contributed to the discussion and design of some experiments. G.I.S. designed and supervised the analyses of hepatic lipid metabolites and contributed to revision of the manuscript. S.J. conceived and directed the project.

Corresponding author

Correspondence to Shengkan Jin.

Ethics declarations

Competing interests

S.J. is a founder of Mito BioPharm, which has licensed the patents surrounding the development of chemical mitochondrial uncouplers, including niclosamide ethanolamine (described here), for treating metabolic diseases.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1. (PDF 4372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Zhang, Y., Zeng, X. et al. Niclosamide ethanolamine–induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat Med 20, 1263–1269 (2014). https://doi.org/10.1038/nm.3699

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing