Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer

Abstract

In solid tumors, resistance to therapy inevitably develops upon treatment with cytotoxic drugs or molecularly targeted therapies. Here, we describe a system that enables pooled shRNA screening directly in mouse hepatocellular carcinomas (HCC) in vivo to identify genes likely to be involved in therapy resistance. Using a focused shRNA library targeting genes located within focal genomic amplifications of human HCC, we screened for genes whose inhibition increased the therapeutic efficacy of the multikinase inhibitor sorafenib. Both shRNA-mediated and pharmacological silencing of Mapk14 (p38α) were found to sensitize mouse HCC to sorafenib therapy and prolong survival by abrogating Mapk14-dependent activation of Mek-Erk and Atf2 signaling. Elevated Mapk14-Atf2 signaling predicted poor response to sorafenib therapy in human HCC, and sorafenib resistance of p-Mapk14-expressing HCC cells could be reverted by silencing Mapk14. Our results suggest that a combination of sorafenib and Mapk14 blockade is a promising approach to overcoming therapy resistance of human HCC.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A transposon-based mouse model of liver cancer shows therapy resistance resembling that of human HCC.
Figure 2: Outline and results of an in vivo RNAi screen to identify sorafenib treatment response modifiers.
Figure 3: Functional genetic validation of Mapk14 as a sorafenib sensitizer gene.
Figure 4: Pharmacological inhibition of Mapk14 sensitizes to sorafenib therapy.
Figure 5: Second-generation Mapk14 inhibitors (skepinone-L and PH-797804) are effective for HCC treatment in combination with sorafenib and exert no adverse effects.
Figure 6: Cross-talk of Mapk14 and Mek-Erk signaling in HCC and its role in sorafenib resistance.

References

  1. Poulikakos, P.I. & Rosen, N. Mutant BRAF melanomas—dependence and resistance. Cancer Cell 19, 11–15 (2011).

    CAS  Article  Google Scholar 

  2. Hartsough, E., Shao, Y. & Aplin, A.E. Resistance to RAF inhibitors revisited. J. Invest. Dermatol. 134, 319–325 (2014).

    CAS  Article  Google Scholar 

  3. Berasain, C. Hepatocellular carcinoma and sorafenib: too many resistance mechanisms? Gut 62, 1674–1675 (2013).

    CAS  Article  Google Scholar 

  4. Bruix, J., Gores, G.J. & Mazzaferro, V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 63, 844–855 (2014).

    CAS  Article  Google Scholar 

  5. Yau, T., Chan, P., Epstein, R. & Poon, R.T. Evolution of systemic therapy of advanced hepatocellular carcinoma. World J. Gastroenterol. 14, 6437–6441 (2008).

    Article  Google Scholar 

  6. Lord, R., Suddle, A. & Ross, P.J. Emerging strategies in the treatment of advanced hepatocellular carcinoma: the role of targeted therapies. Int. J. Clin. Pract. 65, 182–188 (2011).

    CAS  Article  Google Scholar 

  7. Llovet, J.M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    CAS  Article  Google Scholar 

  8. Wilhelm, S. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 5, 835–844 (2006).

    CAS  Article  Google Scholar 

  9. Wuestefeld, T. et al. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 153, 389–401 (2013).

    CAS  Article  Google Scholar 

  10. Kang, T.W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    CAS  Article  Google Scholar 

  11. Carlson, C.M., Frandsen, J.L., Kirchhof, N., McIvor, R.S. & Largaespada, D.A. Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. Proc. Natl. Acad. Sci. USA 102, 17059–17064 (2005).

    CAS  Article  Google Scholar 

  12. Braumüller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    Article  Google Scholar 

  13. Holohan, C., Van, S.S., Longley, D.B. & Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    CAS  Article  Google Scholar 

  14. Margutti, S. & Laufer, S.A. Are MAP kinases drug targets? Yes, but difficult ones. ChemMedChem 2, 1116–1140 (2007).

    CAS  Article  Google Scholar 

  15. Sawey, E.T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    CAS  Article  Google Scholar 

  16. Wagner, E.F. & Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537–549 (2009).

    CAS  Article  Google Scholar 

  17. Nebreda, A.R. & Porras, A. p38 MAP kinases: beyond the stress response. Trends Biochem. Sci. 25, 257–260 (2000).

    CAS  Article  Google Scholar 

  18. Zhang, J., Shen, B. & Lin, A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol. Sci. 28, 286–295 (2007).

    Article  Google Scholar 

  19. Goldstein, D.M., Kuglstatter, A., Lou, Y. & Soth, M.J. Selective p38alpha inhibitors clinically evaluated for the treatment of chronic inflammatory disorders. J. Med. Chem. 53, 2345–2353 (2010).

    CAS  Article  Google Scholar 

  20. Dominguez, C., Powers, D.A. & Tamayo, N. p38 MAP kinase inhibitors: many are made, but few are chosen. Curr. Opin. Drug Discov. Devel. 8, 421–430 (2005).

    CAS  PubMed  Google Scholar 

  21. Koeberle, S.C. et al. Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nat. Chem. Biol. 8, 141–143 (2012).

    CAS  Article  Google Scholar 

  22. Hope, H.R. et al. Anti-inflammatory properties of a novel N-phenyl pyridinone inhibitor of p38 mitogen-activated protein kinase: preclinical-to-clinical translation. J. Pharmacol. Exp. Ther. 331, 882–895 (2009).

    CAS  Article  Google Scholar 

  23. Fischer, S. et al. Dibenzosuberones as p38 mitogen-activated protein kinase inhibitors with low ATP competitiveness and outstanding whole blood activity. J. Med. Chem. 56, 241–253 (2013).

    CAS  Article  Google Scholar 

  24. MacNee, W., Allan, R.J., Jones, I., De Salvo, M.C. & Tan, L.F. Efficacy and safety of the oral p38 inhibitor PH-797804 in chronic obstructive pulmonary disease: a randomised clinical trial. Thorax 68, 738–745 (2013).

    Article  Google Scholar 

  25. Calvisi, D.F. et al. Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer. J. Hepatol. 54, 311–319 (2011).

    CAS  Article  Google Scholar 

  26. Calvisi, D.F. et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130, 1117–1128 (2006).

    CAS  Article  Google Scholar 

  27. Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012).

    CAS  Article  Google Scholar 

  28. Steelman, L.S. et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189–218 (2004).

    CAS  Article  Google Scholar 

  29. Hindley, A. & Kolch, W. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J. Cell Sci. 115, 1575–1581 (2002).

    CAS  PubMed  Google Scholar 

  30. Turner, N.C. et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377 (2008).

    CAS  Article  Google Scholar 

  31. Swanton, C. et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).

    CAS  Article  Google Scholar 

  32. Giroux, V., Iovanna, J. & Dagorn, J.C. Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J. 20, 1982–1991 (2006).

    CAS  Article  Google Scholar 

  33. Huang, S. et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-beta receptor signaling. Cell 151, 937–950 (2012).

    CAS  Article  Google Scholar 

  34. Burgess, D.J. et al. Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc. Natl. Acad. Sci. USA 105, 9053–9058 (2008).

    Article  Google Scholar 

  35. Huesken, D. et al. Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23, 995–1001 (2005).

    CAS  Article  Google Scholar 

  36. Mitchell, C. & Willenbring, H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat. Protoc. 3, 1167–1170 (2008).

    CAS  Article  Google Scholar 

  37. Schlaeger, C. et al. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology 47, 511–520 (2008).

    CAS  Article  Google Scholar 

  38. Dow, L.E. et al. A pipeline for the generation of shRNA transgenic mice. Nat. Protoc. 7, 374–393 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Rinkel, N. Struever, C. Hermann, V. Geissler, U. Koppenhoefer, H. Riedesel, M. Jarek, M. Scharfe and the HZI Genome Analytics Group team for technical assistance. We thank the tissue bank of the National Center for Tumor Diseases Heidelberg for providing human HCC tissues. This work was supported by the German Research Foundation, DFG (Emmy Noether Programme ZE 545/2-1 to L.Z., the “Rebirth” Cluster of Excellence, project “Liver regeneration”, SFB/TRR77 and SFB685), the Helmholtz Association of German Research Centers (VH-NG-424 to L.Z.), the European Commission (project 'Heptromic') and the Wilhelm Sander Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by L.Z. Research was conducted by R.R., D.D., T.L., K.M., T.W., T.-W.K., A.H., M.P., J.L., A.v.T., P.S., J.Z., K.-H.W., S.P., N.P.M., M.E., B.S., S.W.L., R.G., S.L. and L.Z. The manuscript was written by L.Z., R.R. and D.D.

Corresponding author

Correspondence to Lars Zender.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 4565 kb)

Supplementary Table 1

Results from in vivo RNAi screen. (XLS 169 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rudalska, R., Dauch, D., Longerich, T. et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med 20, 1138–1146 (2014). https://doi.org/10.1038/nm.3679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing