Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

IL-18 is not therapeutic for neovascular age-related macular degeneration

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-18 intravitreous administration does not affect choroidal angiogenesis.
Figure 2: Glycerol, but not IL-18 deficiency, increases choroidal angiogenesis.

References

  1. Ambati, J., Ambati, B.K., Yoo, S.H., Ianchulev, S. & Adamis, A.P. Surv. Ophthalmol. 48, 257–293 (2003).

    Article  Google Scholar 

  2. Ambati, J., Atkinson, J.P. & Gelfand, B.D. Nat. Rev. Immunol. 13, 438–451 (2013).

    Article  CAS  Google Scholar 

  3. Ambati, J. & Fowler, B.J. Neuron 75, 26–39 (2012).

    Article  CAS  Google Scholar 

  4. Kaneko, H. et al. Nature 471, 325–330 (2011).

    Article  CAS  Google Scholar 

  5. Tarallo, V. et al. Cell 149, 847–859 (2012).

    Article  CAS  Google Scholar 

  6. Doyle, S.L. et al. Nat. Med. 18, 791–798 (2012).

    Article  CAS  Google Scholar 

  7. Rofagha, S., Bhisitkul, R.B., Boyer, D.S., Sadda, S.R. & Zhang, K. Ophthalmology 120, 2292–2299 (2013).

    Article  Google Scholar 

  8. Nishijima, K. et al. Am. J. Pathol. 171, 53–67 (2007).

    Article  CAS  Google Scholar 

  9. Takeda, A. et al. Nature 460, 225–230 (2009).

    Article  CAS  Google Scholar 

  10. Chan, C.-C. et al. Invest. Ophthalmol. Vis. Sci. 54, 315 (2013).

    Google Scholar 

  11. Tseng, W.A. et al. Invest. Ophthalmol. Vis. Sci. 54, 110–120 (2013).

    Article  CAS  Google Scholar 

  12. Doyle, S.L. et al. Sci. Transl. Med. 6, 230ra244 (2014).

    Article  Google Scholar 

  13. Grossniklaus, H.E., Kang, S.J. & Berglin, L. Prog. Retin. Eye Res. 29, 500–519 (2010).

    Article  Google Scholar 

  14. Dobson, D.E. et al. Cell 61, 223–230 (1990).

    Article  CAS  Google Scholar 

  15. Abrami, L., Tacnet, F. & Ripoche, P. Pflugers Arch. 430, 447–458 (1995).

    Article  CAS  Google Scholar 

  16. Saadoun, S., Papadopoulos, M.C., Hara-Chikuma, M. & Verkman, A.S. Nature 434, 786–792 (2005).

    Article  CAS  Google Scholar 

  17. Hosohara, K. et al. Clin. Diagn. Lab. Immunol. 9, 777–783 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Platis, A. et al. Perfusion 23, 237–242 (2008).

    Article  CAS  Google Scholar 

  19. Woldbaek, P.R. et al. Am. J. Physiol. Heart Circ. Physiol. 289, H708–H714 (2005).

    Article  CAS  Google Scholar 

  20. Yu, Q. et al. Am. J. Physiol. Heart Circ. Physiol. 297, H76–H85 (2009).

    Article  CAS  Google Scholar 

  21. Kleinman, M.E. et al. Nature 452, 591–597 (2008).

    Article  CAS  Google Scholar 

  22. Park, C.C. et al. J. Immunol. 167, 1644–1653 (2001).

    Article  CAS  Google Scholar 

  23. Park, S., Cheon, S. & Cho, D. Cell. Mol. Immunol. 4, 329–335 (2007).

    CAS  PubMed  Google Scholar 

  24. Coughlin, C.M. et al. J. Clin. Invest. 101, 1441–1452 (1998).

    Article  CAS  Google Scholar 

  25. Mallat, Z. et al. Circ. Res. 91, 441–448 (2002).

    Article  CAS  Google Scholar 

  26. Lavalette, S. et al. Am. J. Pathol. 178, 2416–2423 (2011).

    Article  CAS  Google Scholar 

  27. Zhu, Y. et al. PLoS ONE 9, e94743 (2014).

    Article  Google Scholar 

  28. Reinhardt, C. et al. Nature 483, 627–631 (2012).

    Article  CAS  Google Scholar 

  29. Wahlsten, D. et al. J. Neurobiol. 54, 283–311 (2003).

    Article  Google Scholar 

  30. Seok, J. et al. Proc. Natl. Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Toll, G.R. Pattison R. King, L. Xu, M. McConnell, C. Payne, D. Robertson, G. Botzet, K. Ambati and A. Uittenbogaard for technical assistance. J.A. was supported by National Eye Institute/US National Institutes of Health (NIH) grants DP1GM114862, R01EY018350, R01EY018836, R01EY020672 and R01EY022238, the Doris Duke Distinguished Clinical Scientist Award, the Burroughs Wellcome Fund Clinical Scientist Award in Translational Research, the Ellison Medical Foundation Senior Scholar in Aging Award, the Dr. E. Vernon Smith and Eloise C. Smith Macular Degeneration Endowed Chair, a Foundation Fighting Blindness Individual Investigator Research Award, the Carl Reeves Foundation, a Harrington Discovery Institute Scholar-Innovator Award and a Research to Prevent Blindness departmental unrestricted grant. Y.H. was supported by an Alcon Japan Research award. T.Y. was supported by a Fight for Sight postdoctoral award. B.J.F. was supported by NIH T32HL091812 and UL1RR033173. A.B.-C. was supported by the Programme for Advanced Medical Education (sponsored by Fundação Calouste Gulbenkian, Fundação Champalimaud, Ministério da Saúde and Fundação para a Ciência e Tecnologia, Portugal) and a Bayer Global Ophthalmology Research Award. N.K. was supported by NIH K99EY024336 and the Beckman Initiative for Macular Research. B.D.G. was supported by the American Heart Association and the International Retinal Research Foundation. B.K.A. was supported by NIH R01EY017182 and R01EY017950, a Veterans Affairs Merit Award and the Department of Defense. G.N. was supported by NIH R01AI063331 and R01AR052756. D.R.H. was supported by NIH P30EY003040 and R01EY001545 and the Arnold and Mabel Beckman Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

Y.H., T.Y., T.M., V.T., R.Y., Y.K., A.B.-C., N.K., B.D.G., S.B., S.H., X.Z., M.N., R.I. and H.K. performed experiments. G.N., I.H. and H.N. provided animals and reagents. J.A. and B.J.F. wrote the paper with assistance from A.B.-C. The project was jointly directed by J.A., D.R.H., B.K.A., M.N., H.K., Y.O. and H.T. All authors had the opportunity to discuss the results and comment on the manuscript.

Corresponding author

Correspondence to Jayakrishna Ambati.

Ethics declarations

Competing interests

J.A. is named as an inventor on US and PCT patent applications filed by his employer, The University of Kentucky, pertaining to inflammasome-modulating strategies for AMD described in this manuscript. iVeena, Inc., co-founded by B.K.A. and J.A., has licensed technologies related to AMD from The University of Kentucky.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 6774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, Y., Yasuma, T., Mizutani, T. et al. IL-18 is not therapeutic for neovascular age-related macular degeneration. Nat Med 20, 1372–1375 (2014). https://doi.org/10.1038/nm.3671

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing