Abstract

Neurons have an important role in retinal vascular development. Here we show that the G protein–coupled receptor (GPCR) coagulation factor II receptor-like 1 (F2rl1, previously known as Par2) is abundant in retinal ganglion cells and is associated with new blood vessel formation during retinal development and in ischemic retinopathy. After stimulation, F2rl1 in retinal ganglion cells translocates from the plasma membrane to the cell nucleus using a microtubule-dependent shuttle that requires sorting nexin 11 (Snx11). At the nucleus, F2rl1 facilitates recruitment of the transcription factor Sp1 to trigger Vegfa expression and, in turn, neovascularization. In contrast, classical plasma membrane activation of F2rl1 leads to the expression of distinct genes, including Ang1, that are involved in vessel maturation. Mutant versions of F2rl1 that prevent nuclear relocalization but not plasma membrane activation interfere with Vegfa but not Ang1 expression. Complementary angiogenic factors are therefore regulated by the subcellular localization of a receptor (F2rl1) that governs angiogenesis. These findings may have implications for the selectivity of drug actions based on the subcellular distribution of their targets.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Gene Expression Omnibus

References

  1. 1.

    & Protease-activated receptors: regulation of neuronal function. Neuromolecular Med. 7, 79–99 (2005).

  2. 2.

    et al. Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther. 130, 248–282 (2011).

  3. 3.

    et al. Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ. Res. 91, 346–352 (2002).

  4. 4.

    et al. Proangiogenic effects of protease-activated receptor 2 are tumor necrosis factor-α and consecutively Tie2 dependent. Arterioscler. Thromb. Vasc. Biol. 26, 744–750 (2006).

  5. 5.

    , & Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest. Ophthalmol. Vis. Sci. 41, 1217–1228 (2000).

  6. 6.

    , , & Oxygen distribution and consumption in the developing rat retina. Invest. Ophthalmol. Vis. Sci. 47, 4072–4076 (2006).

  7. 7.

    et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

  8. 8.

    et al. Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS ONE 5, e11863 (2010).

  9. 9.

    et al. Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Glia 58, 1177–1185 (2010).

  10. 10.

    et al. Müller cell-derived VEGF is a significant contributor to retinal neovascularization. J. Pathol. 219, 446–454 (2009).

  11. 11.

    et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat. Med. 14, 1067–1076 (2008).

  12. 12.

    , , , & Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002).

  13. 13.

    et al. G-protein–coupled receptors signalling at the cell nucleus: an emerging paradigm. Can. J. Physiol. Pharmacol. 84, 287–297 (2006).

  14. 14.

    et al. Morphological evidence of function-related localization of phospholipids in the cell nucleus. Adv. Enzyme Regul. 32, 73–90 (1992).

  15. 15.

    et al. A nuclear function of β-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 123, 833–847 (2005).

  16. 16.

    et al. Nuclear effects of G-protein receptor kinase 5 on histone deacetylase 5–regulated gene transcription in heart failure. Circ Heart Fail 4, 659–668 (2011).

  17. 17.

    et al. Nuclear localization of the G protein β5/R7-regulator of G protein signaling protein complex is dependent on R7 binding protein. J. Neurochem. 113, 1101–1112 (2010).

  18. 18.

    , & Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell. Signal. 16, 1085–1104 (2004).

  19. 19.

    , , & Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J. Cell Biol. 136, 531–544 (1997).

  20. 20.

    & Intranuclear membranes induced by lipidated proteins are derived from the nuclear envelope. Nucleus 1, 343–353 (2010).

  21. 21.

    et al. Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science 310, 1344–1347 (2005).

  22. 22.

    et al. Role of protease activated receptor 1 and 2 signaling in hypoxia-induced angiogenesis. Arterioscler. Thromb. Vasc. Biol. 27, 1456–1462 (2007).

  23. 23.

    et al. Cortactin activation by FVIIa/tissue factor and PAR2 promotes endothelial cell migration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R577–R585 (2011).

  24. 24.

    , & Two types of protease-activated receptors (PAR-1 and PAR-2) mediate calcium signaling in rat retinal ganglion cells RGC-5. Brain Res. 1047, 159–167 (2005).

  25. 25.

    , , & Retinal ganglion cell death and optic nerve degeneration by genetic ablation in adult mice. Exp. Eye Res. 88, 542–552 (2009).

  26. 26.

    & Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).

  27. 27.

    , & Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442, 1003–1007 (2006).

  28. 28.

    , & Highway to the inner nuclear membrane: rules for the road. Nat. Rev. Mol. Cell Biol. 8, 414–420 (2007).

  29. 29.

    Endosomal sorting and signalling: an emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol. 9, 574–582 (2008).

  30. 30.

    , , , & An essential role for Snx1 in lysosomal sorting of protease-activated receptor-1: evidence for retromer-, Hrs-, and Tsg101-independent functions of sorting nexins. Mol. Biol. Cell 17, 1228–1238 (2006).

  31. 31.

    et al. Snx4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat. Cell Biol. 9, 1370–1380 (2007).

  32. 32.

    & Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 16, 530–537 (2006).

  33. 33.

    , & A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell 134, 427–438 (2008).

  34. 34.

    , , & Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1387 (1993).

  35. 35.

    , , , & A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic 8, 673–686 (2007).

  36. 36.

    & Microtubules and the organization of the Golgi complex. Exp. Cell Res. 159, 1–16 (1985).

  37. 37.

    & Dansyl cadaverine regulates ligand induced endocytosis of interleukin-8 receptor in human polymorphonuclear neutrophils. FEBS Lett. 378, 235–239 (1996).

  38. 38.

    & Transcriptional regulation of the vascular endothelial growth factor gene—a concert of activating factors. Cardiovasc. Res. 65, 564–573 (2005).

  39. 39.

    et al. Nitric oxide signaling via nuclearized endothelial nitric-oxide synthase modulates expression of the immediate early genes iNOS and mPGES-1. J. Biol. Chem. 281, 16058–16067 (2006).

  40. 40.

    & Role of the membrane anchoring and cytoplasmic domains in intracellular transport and localization of viral glycoproteins. Biochem. Cell Biol. 77, 165–178 (1999).

  41. 41.

    , , & Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

  42. 42.

    et al. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood 117, 6024–6035 (2011).

  43. 43.

    et al. Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nat. Med. 10, 502–509 (2004).

  44. 44.

    et al. Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. J. Clin. Invest. 92, 349–358 (1993).

  45. 45.

    et al. Protease-activated receptor dependent and independent signaling by kallikreins 1 and 6 in CNS neuron and astroglial cell lines. J. Neurochem. 107, 855–870 (2008).

  46. 46.

    , , , & Purification and characterization of a trypsin-like serine proteinase from rat brain slices that degrades laminin and type IV collagen and stimulates protease-activated receptor-2. J. Neurochem. 74, 1731–1738 (2000).

  47. 47.

    & Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia 59, 695–703 (2004).

  48. 48.

    et al. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275, 26333–26342 (2000).

  49. 49.

    et al. Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb. Haemost. 89, 561–572 (2003).

  50. 50.

    , , , & Roles and regulation of membrane-associated serine proteases. Biochem. Soc. Trans. 35, 583–587 (2007).

  51. 51.

    et al. Proinflammatory gene induction by platelet-activating factor mediated via its cognate nuclear receptor. J. Immunol. 169, 6474–6481 (2002).

  52. 52.

    , , & An NGF-TrkA–mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097–1100 (1997).

  53. 53.

    , , , & Dynamic imaging of cannabinoid receptor 1 vesicular trafficking in cultured astrocytes. ASN Neuro. 1, AN20090040 (2009).

  54. 54.

    et al. Dynamics of somatostatin type 2A receptor cargoes in living hippocampal neurons. J. Neurosci. 28, 4336–4349 (2008).

  55. 55.

    , , , & Opposing activities of the Snx3-retromer complex and ESCRT proteins mediate regulated cargo sorting at a common endosome. Mol. Biol. Cell 19, 4694–4706 (2008).

  56. 56.

    et al. Nuclear localization of prostaglandin E2 receptors. Proc. Natl. Acad. Sci. USA 95, 15792–15797 (1998).

  57. 57.

    et al. Expression of endogenous nuclear bradykinin B2 receptors mediating signaling in immediate early gene activation. J. Cell. Physiol. 216, 234–244 (2008).

  58. 58.

    et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

  59. 59.

    et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

  60. 60.

    et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J. Clin. Invest. 121, 2278–2289 (2011).

  61. 61.

    et al. Kinase-dependent differentiation of a retinal ganglion cell precursor. Invest. Ophthalmol. Vis. Sci. 47, 427–438 (2006).

  62. 62.

    , , , & Trafficking of proteinase-activated receptor-2 and β-arrestin-1 tagged with green fluorescent protein. β-arrestin–dependent endocytosis of a proteinase receptor. J. Biol. Chem. 274, 18524–18535 (1999).

  63. 63.

    , & Rab5a and rab11a mediate agonist-induced trafficking of protease-activated receptor 2. Am. J. Physiol. Cell Physiol. 284, C1319–C1329 (2003).

  64. 64.

    Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. U S A 82, 488–492 (1985).

  65. 65.

    et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

  66. 66.

    et al. Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain mass and function in the immature subject. Stroke 37, 2807–2815 (2006).

  67. 67.

    et al. The mouse retina as an angiogenesis model. Invest. Ophthalmol. Vis. Sci. 51, 2813–2826 (2010).

  68. 68.

    et al. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J. Clin. Invest. 120, 3022–3032 (2010).

  69. 69.

    et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat. Protoc. 4, 1565–1573 (2009).

  70. 70.

    et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111 (1994).

  71. 71.

    et al. Computer-aided quantification of retinal neovascularization. Angiogenesis 12, 297–301 (2009).

  72. 72.

    et al. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. Am. J. Pathol. 177, 2715–2723 (2010).

  73. 73.

    et al. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci. USA 94, 8884–8889 (1997).

  74. 74.

    , , & Preferential synaptic relationships between substance P-immunoreactive boutons and neurokinin 1 receptor sites in the rat spinal cord. Proc. Natl. Acad. Sci. USA 95, 15775–15780 (1998).

  75. 75.

    , & A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

  76. 76.

    , , & Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

  77. 77.

    et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

  78. 78.

    et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378 (2003).

  79. 79.

    & ChIP and Re-ChIP assays: investigating interactions between regulatory proteins, histone modifications, and the DNA sequences to which they bind. Methods Mol. Biol. 809, 175–188 (2012).

  80. 80.

    , , & Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1. BMC Mol. Biol. 8, 96 (2007).

Download references

Acknowledgements

This study was supported by grants from the Canadian Institutes of Health Research (CIHR; P.S., F.G. Jr., C. Beauséjour, M.H., A.R.-d.-S., G.A. and S.C.), the March of Dimes Birth Defects Foundation (S.C.), the Foundation Fighting Blindness (J.-S.J. and P.S.), Fonds de la Recherche en Santé du Québec (J.-S.J., P.S., G.A. and S.C.), Le Réseau de Recherche en Santé de la Vision (P.S. and S.C.), the National Eye Institute (W.K.) and the Robert Welch Foundation (W.K.). J.-S.J. is supported by the Burroughs Wellcome Fund Career Award for Medical Scientists and the Canadian Child Health Clinician Scientist Program (CIHR). G.A. is a recipient of a CIHR Clinician-Scientist Scholarship. P.S. and S.C. hold Canada Research Chairs. S.C. holds the Leopoldine Wolfe Chair in translational research in age-related macular degeneration. We thank G. Bourque and L. Létourneau (Genome Quebec Innovation Center, McGill University) for advice on ChIP-Seq analysis, C. Brown (Life Sciences Imaging Facility, McGill University) for live imaging advice, D. Barbaz (Department of Pharmacology, Sherbrooke University) for support with scanning EM and M. Chai-An (Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center) for breeding Pou4f2LacZ-DTA/+ mice. We thank N. Agarwal (National Eye Institute, US National Institutes of Health) for providing RGC-5 cells and N. Bunnett (Department of Physiology, University of California) for providing F2RL1-GFP and Flag-F2RL1-HA plasmids.

Author information

Author notes

    • Jean-Sébastien Joyal
    • , Satra Nim
    •  & Tang Zhu

    These authors contributed equally to this work.

Affiliations

  1. Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada.

    • Jean-Sébastien Joyal
    • , Tang Zhu
    • , José Carlos Rivera
    • , Karine Zaniolo
    • , Alexandra Zabeida
    • , Emilie Picard
    • , Pierre Hardy
    •  & Sylvain Chemtob
  2. Department of Ophthalmology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montreal, Montreal, Québec, Canada.

    • Jean-Sébastien Joyal
    • , Nicholas Sitaras
    • , José Carlos Rivera
    • , Przemyslaw Sapieha
    •  & Sylvain Chemtob
  3. Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada.

    • Jean-Sébastien Joyal
    • , Nicholas Sitaras
    • , David Hamel
    • , Christian Beauséjour
    • , Christelle Boileau
    •  & Sylvain Chemtob
  4. Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.

    • Jean-Sébastien Joyal
    • , Satra Nim
    • , Zhuo Shao
    • , Melanie Sanchez
    • , Manon St-Louis
    • , Johanne Ouellette
    • , Vikrant Bhosle
    • , Daya R Varma
    • , Alfredo Ribeiro-da-Silva
    •  & Sylvain Chemtob
  5. The Wyss Institute, Harvard University, Boston, Massachusetts, USA.

    • Martin Montoya-Zavala
  6. Department of Pharmacology, Sherbrooke University, Sherbrooke, Quebec, Canada.

    • Fernand Gobeil Jr
  7. Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

    • William Klein
  8. Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

    • Morley Hollenberg
  9. Department of Cardiology, CHU Sainte-Justine Research Center, Université de Montréal, Montréal, Québec, Canada.

    • Gregor Andelfinger

Authors

  1. Search for Jean-Sébastien Joyal in:

  2. Search for Satra Nim in:

  3. Search for Tang Zhu in:

  4. Search for Nicholas Sitaras in:

  5. Search for José Carlos Rivera in:

  6. Search for Zhuo Shao in:

  7. Search for Przemyslaw Sapieha in:

  8. Search for David Hamel in:

  9. Search for Melanie Sanchez in:

  10. Search for Karine Zaniolo in:

  11. Search for Manon St-Louis in:

  12. Search for Johanne Ouellette in:

  13. Search for Martin Montoya-Zavala in:

  14. Search for Alexandra Zabeida in:

  15. Search for Emilie Picard in:

  16. Search for Pierre Hardy in:

  17. Search for Vikrant Bhosle in:

  18. Search for Daya R Varma in:

  19. Search for Fernand Gobeil in:

  20. Search for Christian Beauséjour in:

  21. Search for Christelle Boileau in:

  22. Search for William Klein in:

  23. Search for Morley Hollenberg in:

  24. Search for Alfredo Ribeiro-da-Silva in:

  25. Search for Gregor Andelfinger in:

  26. Search for Sylvain Chemtob in:

Contributions

J.-S.J., S.N., T.Z., N.S. and S.C. conceived and designed the experiments. J.-S.J., S.N., T.Z., N.S., J.C.R., Z.S., P.S., D.H., M.S., K.Z., J.O., M.M.-Z., A.Z., E.P., V.B., F.G. Jr., C. Beauséjour, A.R.-d.-S., J.O. and M.S.-L. performed experiments. P.S., P.H., D.R.V., F.G., M.H., A.R.-d.-S. and G.A. provided expert advice. C. Boileau provided F2rl1−/− mice. W.K. provided Pou4f2LacZ-DTA/+ mice. G.A. and C. Beauséjour provided gene expression vectors. All authors analyzed the data. J.-S.J. and S.C. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jean-Sébastien Joyal or Gregor Andelfinger or Sylvain Chemtob.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–15 and Supplementary Tables 1–2

Videos

  1. 1.

    Live confocal microscopy video of PAR2-GFP.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nm.3669

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing