Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis

Abstract

Neurons have an important role in retinal vascular development. Here we show that the G protein–coupled receptor (GPCR) coagulation factor II receptor-like 1 (F2rl1, previously known as Par2) is abundant in retinal ganglion cells and is associated with new blood vessel formation during retinal development and in ischemic retinopathy. After stimulation, F2rl1 in retinal ganglion cells translocates from the plasma membrane to the cell nucleus using a microtubule-dependent shuttle that requires sorting nexin 11 (Snx11). At the nucleus, F2rl1 facilitates recruitment of the transcription factor Sp1 to trigger Vegfa expression and, in turn, neovascularization. In contrast, classical plasma membrane activation of F2rl1 leads to the expression of distinct genes, including Ang1, that are involved in vessel maturation. Mutant versions of F2rl1 that prevent nuclear relocalization but not plasma membrane activation interfere with Vegfa but not Ang1 expression. Complementary angiogenic factors are therefore regulated by the subcellular localization of a receptor (F2rl1) that governs angiogenesis. These findings may have implications for the selectivity of drug actions based on the subcellular distribution of their targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: F2rl1 in retinal neurons promotes angiogenesis.
Figure 2: Translocation of F2rl1 from the plasma membrane to the cell nucleus.
Figure 3: Transport of F2RL1 by importin-β1 and SNX11.
Figure 4: Transcriptional activity of F2rl1 at the nucleus.
Figure 5: Subcellular location governs gene induction by F2rl1.
Figure 6: Nuclear F2rl1 contributes to retinal neovascularization.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Saito, T. & Bunnett, N.W. Protease-activated receptors: regulation of neuronal function. Neuromolecular Med. 7, 79–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, M.N. et al. Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther. 130, 248–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Milia, A.F. et al. Protease-activated receptor-2 stimulates angiogenesis and accelerates hemodynamic recovery in a mouse model of hindlimb ischemia. Circ. Res. 91, 346–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, T. et al. Proangiogenic effects of protease-activated receptor 2 are tumor necrosis factor-α and consecutively Tie2 dependent. Arterioscler. Thromb. Vasc. Biol. 26, 744–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Hughes, S., Yang, H. & Chan-Ling, T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest. Ophthalmol. Vis. Sci. 41, 1217–1228 (2000).

    CAS  PubMed  Google Scholar 

  6. Cringle, S.J., Yu, P.K., Su, E.N. & Yu, D.Y. Oxygen distribution and consumption in the developing rat retina. Invest. Ophthalmol. Vis. Sci. 47, 4072–4076 (2006).

    Article  PubMed  Google Scholar 

  7. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott, A. et al. Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS ONE 5, e11863 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Weidemann, A. et al. Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Glia 58, 1177–1185 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bai, Y. et al. Müller cell-derived VEGF is a significant contributor to retinal neovascularization. J. Pathol. 219, 446–454 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Sapieha, P. et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat. Med. 14, 1067–1076 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Mukouyama, Y.S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D.J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Gobeil, F. et al. G-protein–coupled receptors signalling at the cell nucleus: an emerging paradigm. Can. J. Physiol. Pharmacol. 84, 287–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Maraldi, N.M. et al. Morphological evidence of function-related localization of phospholipids in the cell nucleus. Adv. Enzyme Regul. 32, 73–90 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Kang, J. et al. A nuclear function of β-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 123, 833–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Y. et al. Nuclear effects of G-protein receptor kinase 5 on histone deacetylase 5–regulated gene transcription in heart failure. Circ Heart Fail 4, 659–668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Panicker, L.M. et al. Nuclear localization of the G protein β5/R7-regulator of G protein signaling protein complex is dependent on R7 binding protein. J. Neurochem. 113, 1101–1112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zimber, A., Nguyen, Q.-D. & Gespach, C. Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell. Signal. 16, 1085–1104 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Fricker, M., Hollinshead, M., White, N. & Vaux, D. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J. Cell Biol. 136, 531–544 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Linde, N. & Stick, R. Intranuclear membranes induced by lipidated proteins are derived from the nuclear envelope. Nucleus 1, 343–353 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mathew, D. et al. Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science 310, 1344–1347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uusitalo-Jarvinen, H. et al. Role of protease activated receptor 1 and 2 signaling in hypoxia-induced angiogenesis. Arterioscler. Thromb. Vasc. Biol. 27, 1456–1462 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, T. et al. Cortactin activation by FVIIa/tissue factor and PAR2 promotes endothelial cell migration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R577–R585 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Luo, W., Wang, Y. & Reiser, G. Two types of protease-activated receptors (PAR-1 and PAR-2) mediate calcium signaling in rat retinal ganglion cells RGC-5. Brain Res. 1047, 159–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Cho, J.-H., Mu, X., Wang, S.W. & Klein, W.H. Retinal ganglion cell death and optic nerve degeneration by genetic ablation in adult mice. Exp. Eye Res. 88, 542–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Maxfield, F.R. & McGraw, T.E. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. King, M.C., Lusk, C.P. & Blobel, G. Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442, 1003–1007 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Lusk, C.P., Blobel, G. & King, M.C. Highway to the inner nuclear membrane: rules for the road. Nat. Rev. Mol. Cell Biol. 8, 414–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Cullen, P.J. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol. 9, 574–582 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Gullapalli, A., Wolfe, B.L., Griffin, C.T., Magnuson, T. & Trejo, J. An essential role for Snx1 in lysosomal sorting of protease-activated receptor-1: evidence for retromer-, Hrs-, and Tsg101-independent functions of sorting nexins. Mol. Biol. Cell 17, 1228–1238 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Traer, C.J. et al. Snx4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat. Cell Biol. 9, 1370–1380 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Caviston, J.P. & Holzbaur, E.L. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 16, 530–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. King, M.C., Drivas, T.G. & Blobel, G. A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell 134, 427–438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1387 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Roth, D.M., Moseley, G.W., Glover, D., Pouton, C.W. & Jans, D.A. A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic 8, 673–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Thyberg, J. & Moskalewski, S. Microtubules and the organization of the Golgi complex. Exp. Cell Res. 159, 1–16 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Ray, E. & Samanta, A.K. Dansyl cadaverine regulates ligand induced endocytosis of interleukin-8 receptor in human polymorphonuclear neutrophils. FEBS Lett. 378, 235–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Pagès, G. & Pouysségur, J. Transcriptional regulation of the vascular endothelial growth factor gene—a concert of activating factors. Cardiovasc. Res. 65, 564–573 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. Gobeil, F. et al. Nitric oxide signaling via nuclearized endothelial nitric-oxide synthase modulates expression of the immediate early genes iNOS and mPGES-1. J. Biol. Chem. 281, 16058–16067 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh, K. & Ghosh, H.P. Role of the membrane anchoring and cytoplasmic domains in intracellular transport and localization of viral glycoproteins. Biochem. Cell Biol. 77, 165–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Augustin, H.G., Koh, G.Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Joyal, J.-S. et al. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood 117, 6024–6035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Belting, M. et al. Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nat. Med. 10, 502–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Eddleston, M. et al. Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. J. Clin. Invest. 92, 349–358 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vandell, A.G. et al. Protease-activated receptor dependent and independent signaling by kallikreins 1 and 6 in CNS neuron and astroglial cell lines. J. Neurochem. 107, 855–870 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sawada, K., Nishibori, M., Nakaya, N., Wang, Z. & Saeki, K. Purification and characterization of a trypsin-like serine proteinase from rat brain slices that degrades laminin and type IV collagen and stimulates protease-activated receptor-2. J. Neurochem. 74, 1731–1738 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Payne, V. & Kam, P.C. Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia 59, 695–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Takeuchi, T. et al. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275, 26333–26342 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Aimes, R.T. et al. Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb. Haemost. 89, 561–572 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Qiu, D., Owen, K., Gray, K., Bass, R. & Ellis, V. Roles and regulation of membrane-associated serine proteases. Biochem. Soc. Trans. 35, 583–587 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Marrache, A.M. et al. Proinflammatory gene induction by platelet-activating factor mediated via its cognate nuclear receptor. J. Immunol. 169, 6474–6481 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Riccio, A., Pierchala, B.A., Ciarallo, C.L. & Ginty, D.D. An NGF-TrkA–mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097–1100 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Osborne, K.D., Lee, W., Malarkey, E.B., Irving, A.J. & Parpura, V. Dynamic imaging of cannabinoid receptor 1 vesicular trafficking in cultured astrocytes. ASN Neuro. 1, AN20090040 (2009).

    Article  PubMed  CAS  Google Scholar 

  54. Lelouvier, B. et al. Dynamics of somatostatin type 2A receptor cargoes in living hippocampal neurons. J. Neurosci. 28, 4336–4349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Strochlic, T.I., Schmiedekamp, B.C., Lee, J., Katzmann, D.J. & Burd, C.G. Opposing activities of the Snx3-retromer complex and ESCRT proteins mediate regulated cargo sorting at a common endosome. Mol. Biol. Cell 19, 4694–4706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhattacharya, M. et al. Nuclear localization of prostaglandin E2 receptors. Proc. Natl. Acad. Sci. USA 95, 15792–15797 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Savard, M. et al. Expression of endogenous nuclear bradykinin B2 receptors mediating signaling in immediate early gene activation. J. Cell. Physiol. 216, 234–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Jeansson, M. et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J. Clin. Invest. 121, 2278–2289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frassetto, L.J. et al. Kinase-dependent differentiation of a retinal ganglion cell precursor. Invest. Ophthalmol. Vis. Sci. 47, 427–438 (2006).

    Article  PubMed  Google Scholar 

  62. Déry, O., Thoma, M.S., Wong, H., Grady, E.F. & Bunnett, N.W. Trafficking of proteinase-activated receptor-2 and β-arrestin-1 tagged with green fluorescent protein. β-arrestin–dependent endocytosis of a proteinase receptor. J. Biol. Chem. 274, 18524–18535 (1999).

    Article  PubMed  Google Scholar 

  63. Roosterman, D., Schmidlin, F. & Bunnett, N.W. Rab5a and rab11a mediate agonist-induced trafficking of protease-activated receptor 2. Am. J. Physiol. Cell Physiol. 284, C1319–C1329 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Kunkel, T.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. U S A 82, 488–492 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sirinyan, M. et al. Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain mass and function in the immature subject. Stroke 37, 2807–2815 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Stahl, A. et al. The mouse retina as an angiogenesis model. Invest. Ophthalmol. Vis. Sci. 51, 2813–2826 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sapieha, P. et al. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J. Clin. Invest. 120, 3022–3032 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Connor, K.M. et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat. Protoc. 4, 1565–1573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, L.E. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111 (1994).

    CAS  PubMed  Google Scholar 

  71. Stahl, A. et al. Computer-aided quantification of retinal neovascularization. Angiogenesis 12, 297–301 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stahl, A. et al. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. Am. J. Pathol. 177, 2715–2723 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kong, W. et al. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci. USA 94, 8884–8889 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McLeod, A.L., Krause, J.E., Cuello, A.C. & Ribeiro-da-Silva, A. Preferential synaptic relationships between substance P-immunoreactive boutons and neurokinin 1 receptor sites in the rat spinal cord. Proc. Natl. Acad. Sci. USA 95, 15775–15780 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  76. Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Truax, A.D. & Greer, S.F. ChIP and Re-ChIP assays: investigating interactions between regulatory proteins, histone modifications, and the DNA sequences to which they bind. Methods Mol. Biol. 809, 175–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Zaniolo, K., Desnoyers, S., Leclerc, S. & Guérin, S.L. Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1. BMC Mol. Biol. 8, 96 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Canadian Institutes of Health Research (CIHR; P.S., F.G. Jr., C. Beauséjour, M.H., A.R.-d.-S., G.A. and S.C.), the March of Dimes Birth Defects Foundation (S.C.), the Foundation Fighting Blindness (J.-S.J. and P.S.), Fonds de la Recherche en Santé du Québec (J.-S.J., P.S., G.A. and S.C.), Le Réseau de Recherche en Santé de la Vision (P.S. and S.C.), the National Eye Institute (W.K.) and the Robert Welch Foundation (W.K.). J.-S.J. is supported by the Burroughs Wellcome Fund Career Award for Medical Scientists and the Canadian Child Health Clinician Scientist Program (CIHR). G.A. is a recipient of a CIHR Clinician-Scientist Scholarship. P.S. and S.C. hold Canada Research Chairs. S.C. holds the Leopoldine Wolfe Chair in translational research in age-related macular degeneration. We thank G. Bourque and L. Létourneau (Genome Quebec Innovation Center, McGill University) for advice on ChIP-Seq analysis, C. Brown (Life Sciences Imaging Facility, McGill University) for live imaging advice, D. Barbaz (Department of Pharmacology, Sherbrooke University) for support with scanning EM and M. Chai-An (Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center) for breeding Pou4f2LacZ-DTA/+ mice. We thank N. Agarwal (National Eye Institute, US National Institutes of Health) for providing RGC-5 cells and N. Bunnett (Department of Physiology, University of California) for providing F2RL1-GFP and Flag-F2RL1-HA plasmids.

Author information

Authors and Affiliations

Authors

Contributions

J.-S.J., S.N., T.Z., N.S. and S.C. conceived and designed the experiments. J.-S.J., S.N., T.Z., N.S., J.C.R., Z.S., P.S., D.H., M.S., K.Z., J.O., M.M.-Z., A.Z., E.P., V.B., F.G. Jr., C. Beauséjour, A.R.-d.-S., J.O. and M.S.-L. performed experiments. P.S., P.H., D.R.V., F.G., M.H., A.R.-d.-S. and G.A. provided expert advice. C. Boileau provided F2rl1−/− mice. W.K. provided Pou4f2LacZ-DTA/+ mice. G.A. and C. Beauséjour provided gene expression vectors. All authors analyzed the data. J.-S.J. and S.C. wrote the paper.

Corresponding authors

Correspondence to Jean-Sébastien Joyal, Gregor Andelfinger or Sylvain Chemtob.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Tables 1–2 (PDF 9946 kb)

Live confocal microscopy video of PAR2-GFP. (MOV 23187 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joyal, JS., Nim, S., Zhu, T. et al. Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis. Nat Med 20, 1165–1173 (2014). https://doi.org/10.1038/nm.3669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing