Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehog−driven medulloblastoma

Subjects

Abstract

Medulloblastoma, the most common malignant childhood brain tumor, exhibits distinct molecular subtypes and cellular origins. Genetic alterations driving medulloblastoma initiation and progression remain poorly understood. Herein, we identify GNAS, encoding the G protein Gαs, as a potent tumor suppressor gene that, when expressed at low levels, defines a subset of aggressive Sonic hedgehog (SHH)-driven human medulloblastomas. Ablation of the single Gnas gene in anatomically distinct progenitors in mice is sufficient to induce Shh-associated medulloblastomas, which recapitulate their human counterparts. Gαs is highly enriched at the primary cilium of granule neuron precursors and suppresses Shh signaling by regulating both the cAMP-dependent pathway and ciliary trafficking of Hedgehog pathway components. Elevation in levels of a Gαs effector, cAMP, effectively inhibits tumor cell proliferation and progression in Gnas-ablated mice. Thus, our gain- and loss-of-function studies identify a previously unrecognized tumor suppressor function for Gαs that can be found consistently across Shh-group medulloblastomas of disparate cellular and anatomical origins, highlighting G protein modulation as a potential therapeutic avenue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GNAS defines a subset of aggressive SHH-group tumors.
Figure 2: Loss of Gnas in neural stem/progenitor cells induces MB formation.
Figure 3: Gαs and its effector cAMP inhibit Shh signaling and tumor growth in GFAP-Gnas mice.
Figure 4: Gαs regulates ciliary trafficking of hedgehog components and GNP proliferation.
Figure 5: Loss of Gnas in Atoh1+ or Olig1+ progenitors leads to an anatomically distinct Shh-associated MB.
Figure 6: Tumors in Gnas mutants exhibit a gene expression signature resembling SHH-MB.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Taylor, M.D. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012).

    CAS  PubMed  Google Scholar 

  2. Northcott, P.A. et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 122, 231–240 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Grammel, D. et al. Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol. 123, 601–614 (2012).

    CAS  PubMed  Google Scholar 

  4. Sasai, K. et al. Medulloblastomas derived from Cxcr6 mutant mice respond to treatment with a smoothened inhibitor. Cancer Res. 67, 3871–3877 (2007).

    CAS  PubMed  Google Scholar 

  5. Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to Smoothened inhibition. Cancer Cell 25, 393–405 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Niewiadomski, P., Zhujiang, A., Youssef, M. & Waschek, J.A. Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA. Cell. Signal. 25, 2222–2230 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Neves, S.R., Ram, P.T. & Iyengar, R. G protein pathways. Science 296, 1636–1639 (2002).

    CAS  PubMed  Google Scholar 

  8. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    CAS  PubMed  Google Scholar 

  9. Huh, J.Y. et al. Novel nonsense GNAS mutation in a 14-month-old boy with plate-like osteoma cutis and medulloblastoma. J. Dermatol. 41, 319–321 (2014).

    PubMed  Google Scholar 

  10. Cho, Y.J. et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424–1430 (2011).

    PubMed  Google Scholar 

  11. Remke, M. et al. Adult medulloblastoma comprises three major molecular variants. J. Clin. Oncol. 29, 2717–2723 (2011).

    PubMed  Google Scholar 

  12. Remke, M. et al. FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J. Clin. Oncol. 29, 3852–3861 (2011).

    CAS  PubMed  Google Scholar 

  13. Yang, Z.J. et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135–145 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhuo, L. et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31, 85–94 (2001).

    CAS  PubMed  Google Scholar 

  15. Northcott, P.A., Korshunov, A., Pfister, S.M. & Taylor, M.D. The clinical implications of medulloblastoma subgroups. Nat. Rev. Neurol. 8, 340–351 (2012).

    CAS  PubMed  Google Scholar 

  16. Regard, J.B. et al. Wnt/β-catenin signaling is differentially regulated by Gα proteins and contributes to fibrous dysplasia. Proc. Natl. Acad. Sci. USA 108, 20101–20106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu, Q.R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    CAS  PubMed  Google Scholar 

  18. Hohenegger, M. et al. Gsα-selective G protein antagonists. Proc. Natl. Acad. Sci. USA 95, 346–351 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Graziano, M.P. & Gilman, A.G. Synthesis in Escherichia coli of GTPase-deficient mutants of Gs alpha. J. Biol. Chem. 264, 15475–15482 (1989).

    CAS  PubMed  Google Scholar 

  20. Dorsam, R.T. & Gutkind, J.S. G-protein–coupled receptors and cancer. Nat. Rev. Cancer 7, 79–94 (2007).

    CAS  PubMed  Google Scholar 

  21. Tuson, M., He, M. & Anderson, K.V. Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development 138, 4921–4930 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nozawa, Y.I., Lin, C. & Chuang, P.T. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr. Opin. Genet. Dev. 23, 429–437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pan, Y., Wang, C. & Wang, B. Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev. Biol. 326, 177–189 (2009).

    CAS  PubMed  Google Scholar 

  24. Nikulina, E., Tidwell, J.L., Dai, H.N., Bregman, B.S. & Filbin, M.T. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc. Natl. Acad. Sci. USA 101, 8786–8790 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Conti, M. & Jin, S.L. The molecular biology of cyclic nucleotide phosphodiesterases. Prog. Nucleic Acid Res. Mol. Biol. 63, 1–38 (1999).

    CAS  PubMed  Google Scholar 

  26. Wang, B., Fallon, J.F. & Beachy, P.A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    CAS  PubMed  Google Scholar 

  27. Ruiz i Altaba, A., Mas, C. & Stecca, B. The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol. 17, 438–447 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Regard, J.B. et al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat. Med. 19, 1505–1512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mukhopadhyay, S. et al. The ciliary G-protein–coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152, 210–223 (2013).

    CAS  PubMed  Google Scholar 

  30. Yang, L. et al. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res. 67, 651–658 (2007).

    CAS  PubMed  Google Scholar 

  31. Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    CAS  PubMed  Google Scholar 

  32. Goetz, S.C., Ocbina, P.J. & Anderson, K.V. The primary cilium as a Hedgehog signal transduction machine. Methods Cell Biol. 94, 199–222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, J.K., Taipale, J., Young, K.E., Maiti, T. & Beachy, P.A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 99, 14071–14076 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dijkgraaf, G.J. et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res. 71, 435–444 (2011).

    CAS  PubMed  Google Scholar 

  35. Schüller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123–134 (2008).

    PubMed  PubMed Central  Google Scholar 

  36. Xin, M. et al. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J. Neurosci. 25, 1354–1365 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, Q.R. et al. Sonic hedgehog–regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329 (2000).

    CAS  PubMed  Google Scholar 

  38. Machold, R., Klein, C. & Fishell, G. Genes expressed in Atoh1 neuronal lineages arising from the r1/isthmus rhombic lip. Gene Expr. Patterns 11, 349–359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gibson, P. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095–1099 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gilbertson, R.J. & Ellison, D.W. The origins of medulloblastoma subtypes. Annu. Rev. Pathol. 3, 341–365 (2008).

    CAS  PubMed  Google Scholar 

  41. Pounds, S. et al. A procedure to statistically evaluate agreement of differential expression for cross-species genomics. Bioinformatics 27, 2098–2103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. USA 99, 6567–6572 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sengupta, R. et al. CXCR4 activation defines a new subgroup of Sonic hedgehog-driven medulloblastoma. Cancer Res. 72, 122–132 (2012).

    CAS  PubMed  Google Scholar 

  44. Northcott, P.A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mishra, P.K. et al. Misregulation of Scm3p/HJURP causes chromosome instability in Saccharomyces cerevisiae and human cells. PLoS Genet. 7, e1002303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dunleavy, E.M. et al. HJURP is a cell-cycle–dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    CAS  PubMed  Google Scholar 

  47. Parsons, D.W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    CAS  PubMed  Google Scholar 

  48. Silbereis, J.C. et al. Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain. Neuron 81, 574–587 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. O'Hayre, M. et al. The emerging mutational landscape of G proteins and G-protein–coupled receptors in cancer. Nat. Rev. Cancer 13, 412–424 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Romer, J.T. et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/−p53−/− mice. Cancer Cell 6, 229–240 (2004).

    CAS  PubMed  Google Scholar 

  51. Yauch, R.L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sengupta, R., Sun, T., Warrington, N.M. & Rubin, J.B. Treating brain tumors with PDE4 inhibitors. Trends Pharmacol. Sci. 32, 337–344 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chahar, M.K., Sharma, N., Dobhal, M.P. & Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 5, 1–12 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nikaido, T. et al. Inhibition of adenosine 3′,5′-cyclic monophosphate phosphodiesterase by flavonoids. III. Chem. Pharm. Bull. (Tokyo) 37, 1392–1395 (1989).

    CAS  Google Scholar 

  55. Ng, J.M. & Curran, T. The Hedgehog's tale: developing strategies for targeting cancer. Nat. Rev. Cancer 11, 493–501 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, M. et al. Increased glucose tolerance and reduced adiposity in the absence of fasting hypoglycemia in mice with liver-specific Gsα deficiency. J. Clin. Invest. 115, 3217–3227 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Northcott, P.A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    PubMed  Google Scholar 

  58. Northcott, P.A. et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 123, 615–626 (2012).

    CAS  PubMed  Google Scholar 

  59. Carvalho, B.S. & Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Vilella, A.J. et al. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Gilman, L. Lum, E. Hurlock, K. Campbell, J. Chan, H. Li, A. Hassan, D. He, E. Lu, L. He and W. Ding for comments and technical support. We thank B. Fritzsch (University of Iowa) and J. Johnson (UT Southwestern) for Atoh1-Cre and Atoh1-GFP lines, respectively, C. Stiles (Harvard Medical School) for anti-Olig2, R. Rohatgi (Stanford University) for Ptch1-specific antibody and S. Scales (Genentech) for Gli2-, Gli3- and GPR161-specific antibodies. This study was funded in part by grants from the US National Institutes of Health (R01 NS078092 and R01 NS075243) to Q.R.L., the Ministry of Education of China (IRT0935) and from the Canadian Institutes of Health Research to M.D.T. and a postdoctoral fellowship by the Mildred-Scheel Foundation/German Cancer Aid (M.R.).

Author information

Authors and Affiliations

Authors

Contributions

X.H. and Q.R.L. designed the experiments, analyzed the data and wrote the manuscript with input from all authors. X.H., L.Z., Y.C., M.R., D.S., F.L., H.W., Y.Y., Y.X., Y.D., V.R., X.W. and T.H. carried out the in vitro, in vivo, gene profiling or in silico studies. M.K. and S.M.P. provided whole-genome sequencing data. Y.H., F.W. and W.Z. provided resources and supervision. L.S.W. provided the Gnas floxed mice. D.K.B. and S.H.K. diagnosed and confirmed the GNAS-mutated MB. S.L.P., R.J.G., J.B.R. and R.W.-R. provided conceptual advice and edited the manuscript. M.D.T. and Q.R.L. supervised the project.

Corresponding author

Correspondence to Q Richard Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 5541 kb)

Supplementary Table 1

GNAS mutations in SHH medulloblastomas (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, L., Chen, Y. et al. The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehog−driven medulloblastoma. Nat Med 20, 1035–1042 (2014). https://doi.org/10.1038/nm.3666

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3666

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer