Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia

Abstract

Efforts to identify and annotate cancer driver genetic lesions have been focused primarily on the analysis of protein-coding genes; however, most genetic abnormalities found in human cancer are located in intergenic regions. Here we identify a new long range–acting MYC enhancer controlled by NOTCH1 that is targeted by recurrent chromosomal duplications in human T cell acute lymphoblastic leukemia (T-ALL). This highly conserved regulatory element, hereby named N-Me for NOTCH MYC enhancer, is located within a broad super-enhancer region +1.47 Mb from the MYC transcription initiating site, interacts with the MYC proximal promoter and induces orientation-independent MYC expression in reporter assays. Moreover, analysis of N-Me knockout mice demonstrates a selective and essential role of this regulatory element during thymocyte development and in NOTCH1-induced T-ALL. Together these results identify N-Me as a long-range oncogenic enhancer implicated directly in the pathogenesis of human leukemia and highlight the importance of the NOTCH1-MYC regulatory axis in T cell transformation and as a therapeutic target in T-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of N-Me, a NOTCH-bound MYC enhancer recurrently amplified in T-ALL.
Figure 2: Functional characterization of the N-Me enhancer.
Figure 3: Histological analysis of the thymus in N-Me knockout mice.
Figure 4: Characterization of T cell development in N-Me knockout mice.
Figure 5: Analysis of T-ALL tumor initiation in N-Me knockout mice.
Figure 6: Analysis of leukemia maintenance in N-Me knockout cells.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Van Vlierberghe, P. & Ferrando, A. The molecular basis of T cell acute lymphoblastic leukemia. J. Clin. Invest. 122, 3398–3406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferrando, A.A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. De Keersmaecker, K. et al. The TLX1 oncogene drives aneuploidy in T cell transformation. Nat. Med. 16, 1321–1327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Della Gatta, G. et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat. Med. 18, 436–440 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Sanda, T. et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 22, 209–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weng, A.P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Tzoneva, G. & Ferrando, A.A. Recent advances on NOTCH signaling in T-ALL. Curr. Top. Microbiol. Immunol. 360, 163–182 (2012).

    CAS  PubMed  Google Scholar 

  8. Koch, U. & Radtke, F. Mechanisms of T cell development and transformation. Annu. Rev. Cell Dev. Biol. 27, 539–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Schroeter, E.H., Kisslinger, J.A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl. Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watson, I.R., Takahashi, K., Futreal, P.A. & Chin, L. Emerging patterns of somatic mutations in cancer. Nat. Rev. Genet. 14, 703–718 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weng, A.P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharma, V.M. et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol. Cell. Biol. 26, 8022–8031 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palomero, T. et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7;9) rearrangement, aberrant NOTCH1 activation and high sensitivity to γ-secretase inhibitors. Leukemia 20, 1279–1287 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, H. et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl. Acad. Sci. USA 108, 14908–14913 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ashworth, T.D. et al. Deletion-based mechanisms of Notch1 activation in T-ALL: key roles for RAG recombinase and a conserved internal translational start site in Notch1. Blood 116, 5455–5464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Sulis, M.L. et al. NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood 112, 733–740 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pear, W.S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Ferrando, A.A. The role of NOTCH1 signaling in T-ALL. Hematology Am. Soc. Hematol. Educ. Program 353–361 (2009).

    Article  Google Scholar 

  25. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Amundadottir, L.T. et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet. 38, 652–658 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Easton, D.F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haiman, C.A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet. 39, 638–644 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haiman, C.A. et al. A common genetic risk factor for colorectal and prostate cancer. Nat. Genet. 39, 954–956 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiemeney, L.A. et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat. Genet. 40, 1307–1312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jia, L. et al. Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet. 5, e1000597 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pomerantz, M.M. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat. Genet. 41, 882–884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wright, J.B., Brown, S.J. & Cole, M.D. Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk–associated single-nucleotide polymorphism in colorectal cancer cells. Mol. Cell. Biol. 30, 1411–1420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sur, I.K. et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science 338, 1360–1363 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Shi, J. et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 27, 2648–2662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dose, M. et al. c-Myc mediates pre-TCR–induced proliferation but not developmental progression. Blood 108, 2669–2677 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Athineos, D. & Sansom, O.J. Myc heterozygosity attenuates the phenotypes of APC deficiency in the small intestine. Oncogene 29, 2585–2590 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Sansom, O.J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, C.Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lovén, J. et al. Revisiting global gene expression analysis. Cell 151, 476–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138, 1122–1136 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Real, P.J. et al. γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat. Med. 15, 50–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Clappier, E. et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J. Exp. Med. 208, 653–661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soulier, J. et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 106, 274–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Clappier, E. et al. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia 24, 2023–2031 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Encode Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

  50. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Simonis, M. et al. High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nat. Methods 6, 837–842 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Guo, K. et al. Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities. Endocrinology 148, 3987–3997 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Byers, S.L., Wiles, M.V., Dunn, S.L. & Taft, R.A. Mouse estrous cycle identification tool and images. PLoS ONE 7, e35538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiang, M.Y. et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras–initiated leukemia. J. Clin. Invest. 118, 3181–3194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, Y.H. et al. Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene 25, 130–138 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Zeller, K.I., Jegga, A.G., Aronow, B.J., O'Donnell, K.A. & Dang, C.V. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 4, R69 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Hu, Y. & Smyth, G.K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grant CA120196 to A.A.F.), the Stand Up To Cancer Innovative Research Award (A.A.F.), The Pershing Square Sohn Foundation Award (A.A.F.), the Swim Across America Foundation (A.A.F.), the Canceropole Ile de France (J.S.), the program Cartes d'Identité des Tumeurs from the Ligue Contre le Cancer (J.S.), the European Research Council St. Grant Consolidator 311660 (J.S.) and the Saint-Louis Institute program ANR-10-IBHU-0002 (J.S.). D.H. is a Leukemia and Lymphoma Society postdoctoral fellow. L.B. is a postdoctoral researcher supported by the Lymphoma Research Foundation. We are grateful to P. Sumazin for assistance on the analysis of ChIP-seq data, T. Ludwig (Ohio State University) for the ROSA26cre-ERT2/+ mouse, R. Kopan (Cincinnati Children's Hospital Medical Center, University of Cincinnati) for the ΔE-NOTCH1 construct and R. Baer for helpful discussions and revision of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.H. performed most of the experiments and wrote the manuscript. A.A.-I. performed bioinfomatic analyses. T.P. performed the ChIP-seq and 3C studies. S.A.S. performed in vitro studies. L.B. and A.A.W. analyzed hematopoietic phenotypes. L.X. performed some animal studies with D.H. M.C.-M. and D.L.-N. performed histological analyses. C.C.-C. supervised histological analyses. J.S. and E.C. performed genomic analyses of human leukemias. A.A.F. designed the study, supervised research and wrote the manuscript.

Corresponding author

Correspondence to Adolfo A Ferrando.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1–4 (PDF 2164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herranz, D., Ambesi-Impiombato, A., Palomero, T. et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med 20, 1130–1137 (2014). https://doi.org/10.1038/nm.3665

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3665

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer