Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures

Subjects

Abstract

The WNT16 locus is a major determinant of cortical bone thickness and nonvertebral fracture risk in humans. The disability, mortality and costs caused by osteoporosis-induced nonvertebral fractures are enormous. We demonstrate here that Wnt16-deficient mice develop spontaneous fractures as a result of low cortical thickness and high cortical porosity. In contrast, trabecular bone volume is not altered in these mice. Mechanistic studies revealed that WNT16 is osteoblast derived and inhibits human and mouse osteoclastogenesis both directly by acting on osteoclast progenitors and indirectly by increasing expression of osteoprotegerin (Opg) in osteoblasts. The signaling pathway activated by WNT16 in osteoclast progenitors is noncanonical, whereas the pathway activated in osteoblasts is both canonical and noncanonical. Conditional Wnt16 inactivation revealed that osteoblast-lineage cells are the principal source of WNT16, and its targeted deletion in osteoblasts increases fracture susceptibility. Thus, osteoblast-derived WNT16 is a previously unreported key regulator of osteoclastogenesis and fracture susceptibility. These findings open new avenues for the specific prevention or treatment of nonvertebral fractures, a substantial unmet medical need.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Wnt16−/− mice have reduced cortical but not trabecular bone mass.
Figure 2: Spontaneous fractures as a result of several defects of cortical bone in Wnt16−/− mice.
Figure 3: Osteoblast-derived WNT16 inhibits osteoclastogenesis.
Figure 4: WNT16 increases OPG expression and signals through both canonical and noncanonical pathways in osteoblasts.
Figure 5: WNT16 inhibits osteoclast differentiation through noncanonical WNT pathways.
Figure 6: Osteoblasts are the principal source of WNT16, with an impact on cortical bone and fracture susceptibility.

References

  1. Baron, R. & Hesse, E. Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J. Clin. Endocrinol. Metab. 97, 311–325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zebaze, R.M. et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375, 1729–1736 (2010).

    Article  PubMed  Google Scholar 

  3. Holzer, G., von Skrbensky, G., Holzer, L.A. & Pichl, W. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J. Bone Miner. Res. 24, 468–474 (2009).

    Article  PubMed  Google Scholar 

  4. Zheng, H.F. et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet. 8, e1002745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19, 179–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Cadigan, K.M. & Peifer, M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb. Perspect. Biol. 1, a002881 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jenny, A. Planar cell polarity signaling in the Drosophila eye. Curr. Top. Dev. Biol. 93, 189–227 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kohn, A.D. & Moon, R.T. Wnt and calcium signaling: β-catenin–independent pathways. Cell Calcium 38, 439–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Gong, Y. et al. LDL receptor–related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Little, R.D. et al. A mutation in the LDL receptor–related protein 5 gene results in the autosomal dominant high–bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Boyden, L.M. et al. High bone density due to a mutation in LDL-receptor–related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Brunkow, M.E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 68, 577–589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balemans, W. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91–97 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kramer, I. et al. Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis. Mol. Cell. Biol. 30, 3071–3085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glass, D.A. II et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Miclea, R.L. et al. Adenomatous polyposis coli–mediated control of β-catenin is essential for both chondrogenic and osteogenic differentiation of skeletal precursors. BMC Dev. Biol. 9, 26 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bennett, C.N. et al. Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J. Bone Miner. Res. 22, 1924–1932 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonewald, L.F. & Johnson, M.L. Osteocytes, mechanosensing and Wnt signaling. Bone 42, 606–615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holmen, S.L. et al. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem. 280, 21162–21168 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Day, T.F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Hill, T.P., Spater, D., Taketo, M.M., Birchmeier, W. & Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Wei, W. et al. Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol. Cell. Biol. 31, 4706–4719 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maeda, K. et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat. Med. 18, 405–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Medina-Gomez, C. et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 8, e1002718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koller, D.L. et al. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J. Bone Miner. Res. 28, 547–558 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. García-Ibarbia, C. et al. Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos. Int. 24, 2449–2454 (2013).

    Article  PubMed  CAS  Google Scholar 

  29. Hendrickx, G. et al. Variation in the Kozak sequence of WNT16 results in an increased translation and is associated with osteoporosis related parameters. Bone 59, 57–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Brommage, R., Liu, J., Revelli, J., Kirkpatrick, L. & Powwell, D. Gene knockouts of Wnt10b and Wnt16 in mice result in low bone mass. Bone 40, S187 (2007).

    Google Scholar 

  31. Huang, S.M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Teh, M.T. et al. Role for WNT16B in human epidermal keratinocyte proliferation and differentiation. J. Cell Sci. 120, 330–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y., Ross, J.F., Bodine, P.V. & Billiard, J. Homodimerization of Ror2 tyrosine kinase receptor induces 14–3-3β phosphorylation and promotes osteoblast differentiation and bone formation. Mol. Endocrinol. 21, 3050–3061 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Y., Rubin, B., Bodine, P.V. & Billiard, J. Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase. J. Cell. Biochem. 105, 497–502 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Rauch, A. et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 11, 517–531 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, Y. et al. DMP1-targeted Cre expression in odontoblasts and osteocytes. J. Dent. Res. 86, 320–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, J. et al. Lipoproteins are an important bacterial component responsible for bone destruction through the induction of osteoclast differentiation and activation. J. Bone Miner. Res. 28, 2381–2391 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Wermelin, K., Suska, F., Tengvall, P., Thomsen, P. & Aspenberg, P. Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats. Bone 42, 365–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Zhong, Z. et al. Wntless functions in mature osteoblasts to regulate bone mass. Proc. Natl. Acad. Sci. USA 109, E2197–E2204 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bennett, C.N. et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. USA 102, 3324–3329 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stevens, J.R. et al. Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J. Bone Miner. Res. 25, 2138–2147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Green, J.L. et al. Use of a molecular genetic platform technology to produce human Wnt proteins reveals distinct local and distal signaling abilities. PLoS ONE 8, e58395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo, X. et al. Wnt/β-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 18, 2404–2417 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, D. et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 101, 3118–3123 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sugimura, R. et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150, 351–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang, Z., Von den Hoff, J.W., Torensma, R., Meng, L. & Bian, Z. Wnt16 is involved in intramembranous ossification and suppresses osteoblast differentiation through the Wnt/β-catenin pathway. J. Cell. Physiol. 229, 384–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Santiago, F., Oguma, J., Brown, A.M. & Laurence, J. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir. Biochem. Biophys. Res. Commun. 417, 223–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. van Amerongen, R. & Nusse, R. Towards an integrated view of Wnt signaling in development. Development 136, 3205–3214 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Valenzuela, D.M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Windahl, S.H. et al. Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice. Proc. Natl. Acad. Sci. USA 110, 2294–2299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maes, C. et al. Increased skeletal VEGF enhances β-catenin activity and results in excessively ossified bones. EMBO J. 29, 424–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Windahl, S.H., Vidal, O., Andersson, G., Gustafsson, J.A. & Ohlsson, C. Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERβ−/− mice. J. Clin. Invest. 104, 895–901 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vidal, O. et al. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc. Natl. Acad. Sci. USA 97, 5474–5479 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Movérare, S. et al. Differential effects on bone of estrogen receptor α and androgen receptor activation in orchidectomized adult male mice. Proc. Natl. Acad. Sci. USA 100, 13573–13578 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Waarsing, J.H., Day, J.S. & Weinans, H. An improved segmentation method for in vivo microCT imaging. J. Bone Miner. Res. 19, 1640–1650 (2004).

    Article  PubMed  Google Scholar 

  56. Hildebrand, T. & Ruegsegger, P. Quantification of bone microarchitecture with the structure model index. Comput. Methods Biomech. Biomed. Engin. 1, 15–23 (1997).

    Article  PubMed  Google Scholar 

  57. Parfitt, A.M. et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Baron, R., Vignery, A., Neff, L., Silverglate,, A. & Santa Maria, A. Processing of undecalcified bone specimens for bone histomorphometry. in Bone Histomorphometry: Techniques and Interpretation (ed. Recker, R.) 13–35 (CRC Press Inc., Boca Raton, 1983).

  59. Eriksen, E., Axelrod, D. & Melsen, F. Bone Histomorphometry (Raven, New York, 1994).

  60. Hayman, A.R., Macary, P., Lehner, P.J. & Cox, T.M. Tartrate-resistant acid phosphatase (Acp 5): identification in diverse human tissues and dendritic cells. J. Histochem. Cytochem. 49, 675–684 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Granholm, S., Henning, P., Lindholm, C. & Lerner, U.H. Osteoclast progenitor cells present in significant amounts in mouse calvarial osteoblast isolations and osteoclastogenesis increased by BMP-2. Bone 52, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Stanford, C.M., Jacobson, P.A., Eanes, E.D., Lembke, L.A. & Midura, R.J. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106–01 BSP). J. Biol. Chem. 270, 9420–9428 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Granholm, S., Lundberg, P. & Lerner, U.H. Calcitonin inhibits osteoclast formation in mouse haematopoetic cells independently of transcriptional regulation by receptor activator of NF-κB and c-Fms. J. Endocrinol. 195, 415–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Takeshita, S., Kaji, K. & Kudo, A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J. Bone Miner. Res. 15, 1477–1488 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Morrell, N.T. et al. Liposomal packaging generates Wnt protein with in vivo biological activity. PLoS ONE 3, e2930 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Agholme, F., Li, X., Isaksson, H., Ke, H.Z. & Aspenberg, P. Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J. Bone Miner. Res. 25, 2412–2418 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Uggla, M. Petersson, A. Hansevi, A. Lie, I. Lundgren, B. Aleksic and the staff at the Turku Center for Disease Modeling (TCDM) for technical assistance. We thank M. Johansson at Bergman Labora for help with photographing the embryos. We thank R. Brommage (Lexicon Pharmaceuticals Inc.) for providing the Wnt16−/−, exon 1−3 mice. This study was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, COMBINE, the Avtal om Läkarutbildning och Forskning/Läkarutbildningsavtalet (ALF/LUA) research grant in Gothenburg, Linköping University, Swedish National Graduate School in Odontological Sciences, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, the Swedish Rheumatism Association, the Royal 80 Year Fund of King Gustav V, the Novo Nordisk Foundation and the German Research Foundation (SPP 1468 Tu220/6, Immunobone). The work at TCDM was supported by funding provided by University of Turku and Biocenter Finland. This work was supported in part by a grant to R.B. from the US National Institutes of Health (R01AR064724). The HSDM micro-CT core facility performed the micro-CT analyses of the Wnt16−/−, exon 1−3 mice.

Author information

Authors and Affiliations

Authors

Contributions

S.M.-S., P.H. and X.L. contributed equally to this work. S.M.-S. was responsible for the breeding, phenotyping and treatment of the Wnt16−/−, exon 1−4 and conditional Wnt16flox/flox mouse strains. P.H. conducted the in vitro culture experiments and analyses of primary osteoblasts, cocultures and osteoclasts. X.L. was responsible for the breeding and phenotyping of the Wnt16−/−, exon 1−3 mouse colony and conducted in vitro and ex vivo experiments. H.S. assisted with animal experiments and performed initial bone histomorphometry analyses. K.N. performed bone histomorphometry analyses. A.E.B. assisted with animal experiments and performed micro-CT analysis. K.S., S.H.W., H.F., H.I. and C.E. assisted with animal experiments. B.K. performed the FACS analysis. A. Koskela and J. Tuukkanen performed the three-point bending experiments. F.-P.Z. and M.P. generated the conditional Wnt16flox/flox mice. E.E.E., F.Z. and L.S. performed the immunohistochemistry. A.H. performed western blots. M.B. produced the WNT16 liposomes. A. Kassem and C.L. performed the inflammation-induced calvarial bone loss model. O.S. and P.A. performed the rat metaphyseal WNT16 injections. J.Q.F. provided the Dpm1-cre mice. J. Tuckermann provided the Runx2-cre mice. S.M.-S., P.H., R.B., U.H.L., F.G. and C.O. designed and supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Roland Baron, Ulf H Lerner or Claes Ohlsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–10 (PDF 1013 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Movérare-Skrtic, S., Henning, P., Liu, X. et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat Med 20, 1279–1288 (2014). https://doi.org/10.1038/nm.3654

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3654

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing