Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Huntington's disease is a four-repeat tauopathy with tau nuclear rods

Abstract

An imbalance of tau isoforms containing either three or four microtubule-binding repeats causes frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) in families with intronic mutations in the MAPT gene. Here we report equivalent imbalances at the mRNA and protein levels and increased total tau levels in the brains of subjects with Huntington's disease (HD) together with rod-like tau deposits along neuronal nuclei. These tau nuclear rods show an ordered filamentous ultrastructure and can be found filling the neuronal nuclear indentations previously reported in HD brains. Finally, alterations in serine/arginine-rich splicing factor-6 coincide with tau missplicing, and a role of tau in HD pathogenesis is evidenced by the attenuation of motor abnormalities of mutant HTT transgenic mice in tau knockout backgrounds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased 4R/3R tau isoform ratio and total tau protein content in HD brains, presence of TNRs in HD (and AD) brains and analysis of SRSF6 splicing factor in HD brains and in transfected human neuroblastoma SH-SY5Y cells.
Figure 2: SRSF6 alterations (presence in IBs and increased phosphorylation) in mutant HTT transgenic mice, increased 4R tau and total tau protein levels, presence of TNRs and attenuation of motor deficit by genetic reduction of tau.

Similar content being viewed by others

References

  1. Lee, V.M., Goedert, M. & Trojanowski, J.Q. Annu. Rev. Neurosci. 24, 1121–1159 (2001).

    Article  CAS  Google Scholar 

  2. Liu, F. & Gong, C.X. Mol. Neurodegener. 3, 8 (2008).

    Article  Google Scholar 

  3. Hutton, M. et al. Nature 393, 702–705 (1998).

    Article  CAS  Google Scholar 

  4. Huntington's Disease Collaborative Research Group. Cell 72, 971–983 (1993).

  5. Nelson, D.L., Orr, H.T. & Warren, S.T. Neuron 77, 825–843 (2013).

    Article  CAS  Google Scholar 

  6. Ranum, L.P. & Cooper, T.A. Annu. Rev. Neurosci. 29, 259–277 (2006).

    Article  CAS  Google Scholar 

  7. Mykowska, A., Sobczak, K., Wojciechowska, M., Kozlowski, P. & Krzyzosiak, W.J. Nucleic Acids Res. 39, 8938–8951 (2011).

    Article  CAS  Google Scholar 

  8. Sathasivam, K. et al. Proc. Natl. Acad. Sci. USA 110, 2366–2370 (2013).

    Article  CAS  Google Scholar 

  9. Bots, G.T. & Bruyn, G.W. Acta Neuropathol. 55, 21–22 (1981).

    Article  CAS  Google Scholar 

  10. Roos, R.A. & Bots, G.T. J. Neurol. Sci. 61, 37–47 (1983).

    Article  CAS  Google Scholar 

  11. Takahashi, H. et al. Brain Res. 919, 12–19 (2001).

    Article  CAS  Google Scholar 

  12. Evert, B.O. et al. Hum. Mol. Genet. 8, 1169–1176 (1999).

    Article  CAS  Google Scholar 

  13. Díaz-Hernandez, M. et al. J. Neurosci. 23, 11653–11661 (2003).

    Article  Google Scholar 

  14. Zander, C. et al. Hum. Mol. Genet. 10, 2569–2579 (2001).

    Article  CAS  Google Scholar 

  15. Jensen, M.A., Wilkinson, J.E. & Krainer, A.R. Nat. Struct. Mol. Biol. 21, 189–197 (2014).

    Article  CAS  Google Scholar 

  16. Yin, X. et al. J. Biol. Chem. 287, 30497–30506 (2012).

    Article  CAS  Google Scholar 

  17. Kosik, K.S., Orecchio, L.D., Bakalis, S. & Neve, R.L. Neuron 2, 1389–1397 (1989).

    Article  CAS  Google Scholar 

  18. Takuma, H., Arawaka, S. & Mori, H. Brain Res. Dev. Brain Res. 142, 121–127 (2003).

    Article  CAS  Google Scholar 

  19. Rodriguez-Martin, T. et al. Hum. Mol. Genet. 18, 3266–3273 (2009).

    Article  CAS  Google Scholar 

  20. Brunden, K.R., Trojanowski, J.Q. & Lee, V.M. Nat. Rev. Drug Discov. 8, 783–793 (2009).

    Article  CAS  Google Scholar 

  21. Vonsattel, J.P. et al. J. Neuropathol. Exp. Neurol. 44, 559–577 (1985).

    Article  CAS  Google Scholar 

  22. de Silva, R. et al. Neuropathol. Appl. Neurobiol. 29, 288–302 (2003).

    Article  CAS  Google Scholar 

  23. Lasagna-Reeves, C.A. et al. FASEB J. 26, 1946–1959 (2012).

    Article  CAS  Google Scholar 

  24. Mangiarini, L. et al. Cell 87, 493–506 (1996).

    Article  CAS  Google Scholar 

  25. Dawson, H.N. et al. J. Cell Sci. 114, 1179–1187 (2001).

    CAS  PubMed  Google Scholar 

  26. Yamamoto, A., Lucas, J.J. & Hen, R. Cell 101, 57–66 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Gómez-Ramos for helpful suggestions on electron microscopy experiments and A. Rábano and E. Gelpí for advice on human sample analysis. We also thank A. Tomico, M. Lucas and the team at the CBMSO Genomics Facility for their excellent technical assistance, as well as members of the Lucas lab for helpful advice and critical reading of the manuscript. P. Davies (Albert Einstein University) provided the PHF-1 antibody to phosphorylated tau; M. Novak (Slovak Academy of Sciences) and C.M. Wischik (University of Aberdeen) provided the 7.51 antibody to total tau; R. Kayed (University of Texas) provided the T22 antibody to oligomeric tau; S. Finkbeiner (Gladstone Institute) provided Htt constructs comprising the N-terminal fragment of Htt with 17 or 72 CAG repeats fused to the EGFP; and A.R. Krainer (Cold Spring Harbor Laboratory) provided SRSF6 expression vector. This work was supported by Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed–Instituto de Salud Carlos III) and by grants from Ministerio de Ciencia e Innovación (MICINN), Ministerio de Economía y Competitividad (MINECO), Comunidad Autónoma de Madrid, Fundación Ramón Areces and the Seventh Framework Programme of the European Commission (grant agreement 278486, project DEVELAGE). M.F.-N. was the recipient of a CSIC JAE-Pre research contract.

Author information

Authors and Affiliations

Authors

Contributions

J.J.L. directed the study. M.F.-N., J.R.C., M.S.-G., J.J.M.H. and I.F. designed and performed experiments. M.F.-N., J.R.C., J.J.M.H., A.J.M.R., I.F. and J.J.L. analyzed and interpreted the data. F.H. and J.A. made intellectual contributions to experimental design and discussion. J.J.L. wrote the manuscript.

Corresponding author

Correspondence to José J Lucas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–8 (PDF 17350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Nogales, M., Cabrera, J., Santos-Galindo, M. et al. Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 20, 881–885 (2014). https://doi.org/10.1038/nm.3617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing