Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity


Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet–induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Browning phenotype of WAT in Notch-signaling mutant mice.
Figure 2: Improved glucose metabolism in Notch-signaling mutant mice.
Figure 3: Resistance of aNotch1 mice to HFD-induced obesity.
Figure 4: Activation of Notch1 in adipocytes inhibits browning and glucose metabolism.
Figure 5: Notch signaling inhibits the expression of Ppargc1a and Prdm16 in cultured white adipocytes.
Figure 6: Inhibition of Notch in Lep-deficient obese mice (Lepob) ameliorates obesity and glucose metabolism.


  1. 1

    Smith, R.E. Thermoregulatory and adaptive behavior of brown adipose tissue. Science 146, 1686–1689 (1964).

    CAS  PubMed  Google Scholar 

  2. 2

    Nedergaard, J. & Cannon, B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11, 268–272 (2010).

    CAS  PubMed  Google Scholar 

  3. 3

    Rosen, E.D. & Spiegelman, B.M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Tran, T.T. & Kahn, C.R. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat. Rev. Endocrinol. 6, 195–213 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. 5

    van Marken Lichtenbelt, W.D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    CAS  PubMed  Google Scholar 

  6. 6

    Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Virtanen, K.A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS  PubMed  Google Scholar 

  8. 8

    Cypess, A.M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Zingaretti, M.C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009).

    CAS  PubMed  Google Scholar 

  10. 10

    Cypess, A.M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Jespersen, N.Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798–805 (2013).

    CAS  PubMed  Google Scholar 

  12. 12

    Lidell, M.E. et al. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19, 631–634 (2013).

    CAS  PubMed  Google Scholar 

  13. 13

    Schulz, T.J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379–383 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Fisher, F.M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Ohno, H., Shinoda, K., Spiegelman, B.M. & Kajimura, S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15, 395–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).

    CAS  PubMed  Google Scholar 

  17. 17

    Frontini, A. et al. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim. Biophys. Acta 1831, 950–959 (2013).

    CAS  PubMed  Google Scholar 

  18. 18

    Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Wang, Q.A., Tao, C., Gupta, R.K. & Scherer, P.E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Rosenwald, M., Perdikari, A., Rulicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).

    CAS  PubMed  Google Scholar 

  21. 21

    Ye, L. et al. Fat cells directly sense temperature to activate thermogenesis. Proc. Natl. Acad. Sci. USA 110, 12480–12485 (2013).

    CAS  PubMed  Google Scholar 

  22. 22

    Cao, L. et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 14, 324–338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Shabalina, I.G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Reports 5, 1196–1203 (2013).

    CAS  PubMed  Google Scholar 

  24. 24

    Pfannenberg, C. et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59, 1789–1793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Ouellet, V. et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG–detected BAT in humans. J. Clin. Endocrinol. Metab. 96, 192–199 (2011).

    CAS  PubMed  Google Scholar 

  26. 26

    Schroeter, E.H., Kisslinger, J.A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    CAS  PubMed  Google Scholar 

  27. 27

    Ross, D.A., Rao, P.K. & Kadesch, T. Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3–L1 preadipocytes. Mol. Cell. Biol. 24, 3505–3513 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Garcés, C. et al. Notch-1 controls the expression of fatty acid–activated transcription factors and is required for adipogenesis. J. Biol. Chem. 272, 29729–29734 (1997).

    PubMed  Google Scholar 

  29. 29

    Lai, P.Y., Tsai, C.B. & Tseng, M.J. Active form Notch4 promotes the proliferation and differentiation of 3T3–L1 preadipocytes. Biochem. Biophys. Res. Commun. 430, 1132–1139 (2013).

    CAS  PubMed  Google Scholar 

  30. 30

    Urs, S. et al. Effect of soluble Jagged1-mediated inhibition of Notch signaling on proliferation and differentiation of an adipocyte progenitor cell model. Adipocyte 1, 46–57 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Vujovic, S., Henderson, S.R., Flanagan, A.M. & Clements, M.O. Inhibition of γ-secretases alters both proliferation and differentiation of mesenchymal stem cells. Cell Prolif. 40, 185–195 (2007).

    CAS  PubMed  Google Scholar 

  32. 32

    Osathanon, T., Subbalekha, K., Sastravaha, P. & Pavasant, P. Notch signalling inhibits the adipogenic differentiation of single-cell–derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol. Int. 36, 1161–1170 (2012).

    CAS  PubMed  Google Scholar 

  33. 33

    Huang, Y. et al. γ-secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of Notch and PPAR-γ. Cell Prolif. 43, 147–156 (2010).

    CAS  PubMed  Google Scholar 

  34. 34

    Nichols, A.M. et al. Notch pathway is dispensable for adipocyte specification. Genesis 40, 40–44 (2004).

    CAS  PubMed  Google Scholar 

  35. 35

    Stanford, K.I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Orava, J. et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 14, 272–279 (2011).

    CAS  PubMed  Google Scholar 

  37. 37

    Cannon, B. & Nedergaard, J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242–253 (2011).

    PubMed  Google Scholar 

  38. 38

    Rosenbaum, M. & Leibel, R.L. The role of leptin in human physiology. N. Engl. J. Med. 341, 913–915 (1999).

    CAS  PubMed  Google Scholar 

  39. 39

    Pajvani, U.B. et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat. Med. 19, 1054–1060 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Weisberg, S.P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Martens, K., Bottelbergs, A. & Baes, M. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett. 584, 1054–1058 (2010).

    CAS  PubMed  Google Scholar 

  42. 42

    Urs, S., Harrington, A., Liaw, L. & Small, D. Selective expression of an aP2/fatty acid binding protein 4–Cre transgene in non-adipogenic tissues during embryonic development. Transgenic Res. 15, 647–653 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Mullican, S.E. et al. A novel adipose-specific gene deletion model demonstrates potential pitfalls of existing methods. Mol. Endocrinol. 27, 127–134 (2013).

    CAS  PubMed  Google Scholar 

  44. 44

    Lee, K.Y. et al. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 62, 864–874 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Pajvani, U.B. et al. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat. Med. 17, 961–967 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Fukuda, D. et al. Notch ligand δ-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc. Natl. Acad. Sci. USA 109, E1868–E1877 (2012).

    CAS  PubMed  Google Scholar 

  47. 47

    Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Gerhart-Hines, Z. et al. The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature 503, 410–413 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Bray, S.J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    CAS  PubMed  Google Scholar 

  50. 50

    Iso, T. et al. HERP, a novel heterodimer partner of HES/Espl in Notch signaling. Mol. Cell. Biol. 21, 6080–6089 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Kurooka, H. & Honjo, T. Functional interaction between the mouse Notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J. Biol. Chem. 275, 17211–17220 (2000).

    CAS  PubMed  Google Scholar 

  52. 52

    Lerin, C. et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 3, 429–438 (2006).

    CAS  PubMed  Google Scholar 

  53. 53

    Kinameri, E. et al. Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS ONE 3, e3859 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Schwanbeck, R., Martini, S., Bernoth, K. & Just, U. The Notch signaling pathway: molecular basis of cell context dependency. Eur. J. Cell Biol. 90, 572–581 (2011).

    CAS  PubMed  Google Scholar 

  55. 55

    Battle, M. et al. Obesity induced a leptin-Notch signaling axis in breast cancer. Int. J. Cancer 134, 1605–1616 (2014).

    CAS  PubMed  Google Scholar 

  56. 56

    Zecchini, V., Domaschenz, R., Winton, D. & Jones, P. Notch signaling regulates the differentiation of post-mitotic intestinal epithelial cells. Genes Dev. 19, 1686–1691 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Liu, W. et al. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J. Cell Sci. 126, 3527–3532 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol. 269, 81–94 (2004).

    CAS  PubMed  Google Scholar 

  60. 60

    He, W. et al. Adipose-specific peroxisome proliferator–activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. USA 100, 15712–15717 (2003).

    CAS  PubMed  Google Scholar 

  61. 61

    Coleman, D.L. & Hummel, K.P. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 9, 287–293 (1973).

    CAS  PubMed  Google Scholar 

  62. 62

    Murtaugh, L.C., Stanger, B.Z., Kwan, K.M. & Melton, D.A. Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl. Acad. Sci. USA 100, 14920–14925 (2003).

    CAS  PubMed  Google Scholar 

  63. 63

    Milano, J. et al. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci. 82, 341–358 (2004).

    CAS  PubMed  Google Scholar 

  64. 64

    Wen, Y. et al. Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol. Cell. Biol. 32, 2300–2311 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Shan, T., Liang, X., Bi, P. & Kuang, S. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J. 27, 1981–1989 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Demehri, S., Turkoz, A. & Kopan, R. Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell 16, 55–66 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Gao, J. et al. Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell 4, 548–558 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Handschin, C., Rhee, J., Lin, J., Tarr, P.T. & Spiegelman, B.M. An autoregulatory loop controls peroxisome proliferator–activated receptor γ coactivator 1α expression in muscle. Proc. Natl. Acad. Sci. USA 100, 7111–7116 (2003).

    CAS  PubMed  Google Scholar 

Download references


We thank T. Honjo (Kyoto University, Japan) for providing the Rbpjflox/flox mice; Dow AgroScience for providing Methocel E4M reagent; K. Ajuwon for providing access to the calorimetry facility; S. Koser and S. Donkin for assistance with luciferase assays; D. Zhou for Odyssey imaging facility support; T. Wiegand and C. Bain for assistance with histology; J. Wu and S. Hobaugh for maintaining mouse colonies; and members of the Kuang laboratory for comments. This work was partially supported by a grant from the US National Institutes of Health (R01AR060652 to S.K.).

Author information




P.B. and S.K. conceived the project, designed the experiments and prepared the manuscript. P.B., T.S., W.L., F.Y., X.Y., X.-R.L., J.W. and J.L. performed the experiments. N.C. provided reagents. P.B., T.S., W.L., X.L. and S.K. analyzed the data.

Corresponding author

Correspondence to Shihuan Kuang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 823 kb)

Supplementary Video 1

Movement of WT (left) and aNotch1 (right) mice in the new cages. (MOV 3831 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bi, P., Shan, T., Liu, W. et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med 20, 911–918 (2014).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing