Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

Abstract

Hedgehog signaling drives oncogenesis in several cancers, and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened (SMO). However, resistance to Smoothened inhibitors occurs by genetic changes of Smoothened or other downstream Hedgehog components. Here we overcome these resistance mechanisms by modulating GLI transcription through inhibition of bromo and extra C-terminal (BET) bromodomain proteins. We show that BRD4 and other BET bromodomain proteins regulate GLI transcription downstream of SMO and suppressor of fused (SUFU), and chromatin immunoprecipitation studies reveal that BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites after treatment with JQ1, a small-molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM (genetically engineered mouse model)-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. Altogether, our results reveal BET proteins as critical regulators of Hedgehog pathway transcriptional output and nominate BET bromodomain inhibitors as a strategy for treating Hedgehog-driven tumors with emerged or a priori resistance to Smoothened antagonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BRD4 is necessary for GLI transcription.
Figure 2: JQ1 inhibits Hh target gene activation at the level of the GLI1 and GLI2 promoters.
Figure 3: JQ1 inhibits Hh pathway activity and cell viability and proliferation in Ptch-mutated medulloblastoma (SmoWT-MB and Med1-MB) cells.
Figure 4: On-target validation of the inhibitory effects of JQ1 in Hh-driven tumor cells.
Figure 5: JQ1 inhibits Hh pathway activity and cell viability and proliferation in SMOi-resistant Hh-driven tumors.
Figure 6: JQ1 inhibits Hh-driven tumor growth in vivo.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Goodrich, L.V., Johnson, R.L., Milenkovic, L., McMahon, J.A. & Scott, M.P. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev. 10, 301–312 (1996).

    CAS  PubMed  Google Scholar 

  2. Binns, W., Shupe, J.L., Keeler, R.F. & James, L.F. Chronologic evaluation of teratogenicity in sheep fed Veratrum californicum. J. Am. Vet. Med. Assoc. 147, 839–842 (1965).

    CAS  PubMed  Google Scholar 

  3. Gorlin, R.J., Vickers, R.A., Kellen, E. & Williamson, J.J. Multiple nasal-cell nevi syndrome. An analysis of a syndrome consisting of multiple nevoid basal-cell carcinoma, jaw cysts, skeletal anomalies, medulloblastoma, and hyporesponsiveness to parathormone. Cancer 18, 89–104 (1965).

    CAS  PubMed  Google Scholar 

  4. Johnson, R.L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    CAS  PubMed  Google Scholar 

  5. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    CAS  PubMed  Google Scholar 

  6. Marigo, V. et al. Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila segment polarity gene hedgehog. Genomics 28, 44–51 (1995).

    CAS  PubMed  Google Scholar 

  7. Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J.E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86, 221–232 (1996).

    CAS  PubMed  Google Scholar 

  8. Huangfu, D. & Anderson, K.V. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. USA 102, 11325–11330 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Haycraft, C.J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53 (2005).

    PubMed  PubMed Central  Google Scholar 

  10. Liu, A., Wang, B. & Niswander, L.A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 (2005).

    CAS  PubMed  Google Scholar 

  11. Oliver, T.G. et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc. Natl. Acad. Sci. USA 100, 7331–7336 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Regl, G. et al. Human GLI2 and GLI1 are part of a positive feedback mechanism in basal cell carcinoma. Oncogene 21, 5529–5539 (2002).

    CAS  PubMed  Google Scholar 

  13. Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 66, 10171–10178 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie, J. et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res. 57, 2369–2372 (1997).

    CAS  PubMed  Google Scholar 

  15. Thayer, S.P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cho, Y.J. et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424–1430 (2011).

    PubMed  Google Scholar 

  17. Pugh, T.J. et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–110 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, M.D. et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet. 31, 306–310 (2002).

    CAS  PubMed  Google Scholar 

  19. ten Haaf, A. et al. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer 9, 298 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Northcott, P.A. et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Buczkowicz, P., Ma, J. & Hawkins, C. GLI2 is a potential therapeutic target in pediatric medulloblastoma. J. Neuropathol. Exp. Neurol. 70, 430–437 (2011).

    CAS  PubMed  Google Scholar 

  22. Jagani, Z. et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat. Med. 16, 1429–1433 (2010).

    CAS  PubMed  Google Scholar 

  23. Zwerner, J.P. et al. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene 27, 3282–3291 (2008).

    CAS  PubMed  Google Scholar 

  24. Chen, J.K., Taipale, J., Cooper, M.K. & Beachy, P.A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2, 51ra70 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Lee, M.J. et al. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc. Natl. Acad. Sci. USA 109, 7859–7864 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Y., Laterra, J. & Pomper, M.G. Hedgehog pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/BCRP and ABCB1/Pgp. Neoplasia 11, 96–101 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. LoRusso, P.M. et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin. Cancer Res. 17, 2502–2511 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rudin, C.M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Von Hoff, D.D. et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361, 1164–1172 (2009).

    CAS  PubMed  Google Scholar 

  31. Yauch, R.L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, J. et al. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 23, 23–34 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, J., Lee, J.J., Gardner, D. & Beachy, P.A. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc. Natl. Acad. Sci. USA 107, 13432–13437 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Atwood, S.X., Li, M., Lee, A., Tang, J.Y. & Oro, A.E. GLI activation by atypical protein kinase C ιι/λ regulates the growth of basal cell carcinomas. Nature 494, 484–488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kenney, A.M., Widlund, H.R. & Rowitch, D.H. Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131, 217–228 (2004).

    CAS  PubMed  Google Scholar 

  36. Hyman, J.M. et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc. Natl. Acad. Sci. USA 106, 14132–14137 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    CAS  PubMed  Google Scholar 

  39. Jacobson, R.H., Ladurner, A.G., King, D.S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    CAS  PubMed  Google Scholar 

  40. Jang, M.K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II–dependent transcription. Mol. Cell 19, 523–534 (2005).

    CAS  PubMed  Google Scholar 

  41. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    CAS  PubMed  Google Scholar 

  42. Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Delmore, J.E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mertz, J.A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA 108, 16669–16674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 3, 308–323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bandopadhayay, P. et al. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin. Cancer Res. 20, 912–925 (2014).

    CAS  PubMed  Google Scholar 

  48. Chen, J.K., Taipale, J., Young, K.E., Maiti, T. & Beachy, P.A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 99, 14071–14076 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Maity, T., Fuse, N. & Beachy, P.A. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc. Natl. Acad. Sci. USA 102, 17026–17031 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lewis, K.E., Concordet, J.P. & Ingham, P.W. Characterisation of a second patched gene in the zebrafish Danio rerio and the differential response of patched genes to Hedgehog signalling. Dev. Biol. 208, 14–29 (1999).

    CAS  PubMed  Google Scholar 

  51. Shen, M.C. et al. Heat-shock–mediated conditional regulation of hedgehog/gli signaling in zebrafish. Dev. Dyn. 242, 539–549 (2013).

    PubMed  Google Scholar 

  52. Macdonald, R. et al. Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121, 3267–3278 (1995).

    CAS  PubMed  Google Scholar 

  53. Lee, J. et al. An ENU mutagenesis screen in zebrafish for visual system mutants identifies a novel splice-acceptor site mutation in patched2 that results in colobomas. Invest. Ophthalmol. Vis. Sci. 53, 8214–8221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, M.H. et al. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev. 23, 1910–1928 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Roessler, E. et al. A previously unidentified amino-terminal domain regulates transcriptional activity of wild-type and disease-associated human GLI2. Hum. Mol. Genet. 14, 2181–2188 (2005).

    CAS  PubMed  Google Scholar 

  56. Goodrich, L.V., Milenkovic, L., Higgins, K.M. & Scott, M.P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    CAS  PubMed  Google Scholar 

  57. Aszterbaum, M. et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat. Med. 5, 1285–1291 (1999).

    CAS  PubMed  Google Scholar 

  58. Lee, E.Y. et al. Hedgehog pathway–regulated gene networks in cerebellum development and tumorigenesis. Proc. Natl. Acad. Sci. USA 107, 9736–9741 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Houzelstein, D. et al. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol. Cell. Biol. 22, 3794–3802 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cooper, M.K., Porter, J.A., Young, K.E. & Beachy, P.A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998).

    CAS  PubMed  Google Scholar 

  61. Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to Smoothened inhibition. Cancer Cell 25, 393–405 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported the St. Baldrick's Foundation Scholar Award (Y.-J.C.), a Beirne Faculty Scholar Endowment (Y.-J.C.), US National Institutes of Health (NIH) grant U01-CA176287 (Y.-J.C.), an Alex's Lemonade Stand Foundation Young Investigator Award (Y.T.), the Damon-Runyon Cancer Research Foundation (J.Q. and J.E.B.), NIH R01-CA159859 (R.W.-R.) and a pilot project grant from the Medical College of Wisconsin Cancer Center–Advancing a Healthier Wisconsin (B.A.L.). R.W.-R. is the recipient of a Leadership Award (LA1-01747) from the California Institute of Regenerative Medicine. We thank the Stanford Functional Genomics Facility (SFGF) and the Protein and Nucleic Acid (PAN) facility for their assistance in generating gene expression microarray data and reagents. We thank M. Scott (Stanford), C. Rudin (Memorial Sloan-Kettering Cancer Center), P. Beachy (Stanford), A. Sweet-Cordero (Stanford), P.-T. Chang (University of California, San Francisco), R. Karlstrom (University of Massachusetts, Amherst) and J.K. Chen (Stanford) for reagents, helpful suggestions and/or critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.T. and Y.-J.C. conceived the project and wrote the manuscript. Y.T., B.N., S.M., B.B., N.V., S.S., S.C., A.P., S.O. and F.Y. performed all molecular biology experiments. J.Q. and J.E.B. synthesized and supplied JQ1 for all studies. A.E.O., S.X.A., R.J.W., A.L. and J.Y.T. generated and prepared GEMM-derived BCC cells, and R.W.-R. generated and provided patient-derived medulloblastoma cells. P.B., G.B., R.B. and Y.-J.C. performed all informatics analyses. S.G., A.L., Y.T., S.M., P.W., M.M., S.H.C. and S.S. performed JQ1 mouse in vivo studies. M.I.W. and B.A.L. performed all zebrafish studies.

Corresponding author

Correspondence to Yoon-Jae Cho.

Ethics declarations

Competing interests

The Dana-Farber Cancer Institute has licensed drug-like derivatives of JQ1 prepared in the Bradner laboratory to Tensha Therapeutics for clinical translation as cancer therapeutics. Dana-Farber and J.E.B. have been provided minority equity shares in Tensha. J.Q. has a consultant agreement with Tensha Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 3270 kb)

Supplementary Data Set

ssGSEA of gene expression data generated from SmoWT MB cells exposed for 6h to DMSO, JQ1 (1 μM), or GDC-0449 (0.1 μM) using v2.0 CGP gene sets (http://www.broadinstitute.org/gsea/msigdb/index.jsp). (TXT 830 kb)

Supplementary Table 1

Gene sets derived from Lee et al., PNAS 2010. (XLSX 23 kb)

Supplementary Table 2

qPCR primers used in study. (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Gholamin, S., Schubert, S. et al. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med 20, 732–740 (2014). https://doi.org/10.1038/nm.3613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing