Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of the hepatitis C virus RNA replicase by endogenous lipid peroxidation

Abstract

Oxidative tissue injury often accompanies viral infection, yet there is little understanding of how it influences virus replication. We show that multiple hepatitis C virus (HCV) genotypes are exquisitely sensitive to oxidative membrane damage, a property distinguishing them from other pathogenic RNA viruses. Lipid peroxidation, regulated in part through sphingosine kinase-2, severely restricts HCV replication in Huh-7 cells and primary human hepatoblasts. Endogenous oxidative membrane damage lowers the 50% effective concentration of direct-acting antivirals in vitro, suggesting critical regulation of the conformation of the NS3-4A protease and the NS5B polymerase, membrane-bound HCV replicase components. Resistance to lipid peroxidation maps genetically to transmembrane and membrane-proximal residues within these proteins and is essential for robust replication in cell culture, as exemplified by the atypical JFH1 strain of HCV. Thus, the typical, wild-type HCV replicase is uniquely regulated by lipid peroxidation, providing a mechanism for attenuating replication in stressed tissue and possibly facilitating long-term viral persistence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SKI enhances genotype 1 HCV replication while suppressing JFH1-based viruses by inhibiting SPHK2.
Figure 2: Differential regulation of HCV strains by SPHK2-mediated lipid peroxidation.
Figure 3: Inhibition of lipid peroxidation by SKI or vitamin E promotes production and spread of infectious genotype 1 HCV.
Figure 4: Lipid peroxidation regulates wild-type HCV replication and represses cell culture–adapted virus in primary human liver cultures.
Figure 5: Lipid peroxidation reduces HCV-induced membranous web abundance and alters the EC50 of DAAs.
Figure 6: Resistance to lipid peroxidation is tightly linked to robust replication in cell culture.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kalyanaraman, B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox. Biol. 1, 244–257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dennery, P.A. Effects of oxidative stress on embryonic development. Birth Defects Res. C Embryo Today 81, 155–162 (2007).

    CAS  PubMed  Google Scholar 

  4. Valyi-Nagy, T. & Dermody, T.S. Role of oxidative damage in the pathogenesis of viral infections of the nervous system. Histol. Histopathol. 20, 957–967 (2005).

    CAS  PubMed  Google Scholar 

  5. Thomas, D.L. Global control of hepatitis C: where challenge meets opportunity. Nat. Med. 19, 850–858 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi, J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic. Biol. Med. 52, 1135–1150 (2012).

    CAS  PubMed  Google Scholar 

  7. Okuda, M. et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122, 366–375 (2002).

    CAS  PubMed  Google Scholar 

  8. Huang, H., Chen, Y. & Ye, J. Inhibition of hepatitis C virus replication by peroxidation of arachidonate and restoration by vitamin E. Proc. Natl. Acad. Sci. USA 104, 18666–18670 (2007).

    CAS  PubMed  Google Scholar 

  9. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lindenbach, B.D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    CAS  PubMed  Google Scholar 

  11. Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA 102, 9294–9299 (2005).

    CAS  PubMed  Google Scholar 

  12. Yi, M., Villanueva, R.A., Thomas, D.L., Wakita, T. & Lemon, S.M. Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc. Natl. Acad. Sci. USA 103, 2310–2315 (2006).

    CAS  PubMed  Google Scholar 

  13. Pietschmann, T. et al. Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog. 5, e1000475 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. Paul, D., Hoppe, S., Saher, G., Krijnse-Locker, J. & Bartenschlager, R. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J. Virol. 87, 10612–10627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gosert, R. et al. Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J. Virol. 77, 5487–5492 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi, S.T., Lee, K.J., Aizaki, H., Hwang, S.B. & Lai, M.M. Hepatitis C virus RNA replication occurs on a detergent-resistant membrane that cofractionates with caveolin-2. J. Virol. 77, 4160–4168 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu, N.Y. et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141, 799–811 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Reiss, S. et al. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9, 32–45 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saxena, V., Lai, C.K., Chao, T.C., Jeng, K.S. & Lai, M.M. Annexin A2 is involved in the formation of hepatitis C virus replication complex on the lipid raft. J. Virol. 86, 4139–4150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Romero-Brey, I. et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 8, e1003056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9, 1089–1097 (2007).

    CAS  PubMed  Google Scholar 

  22. Aizaki, H. et al. Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J. Virol. 82, 5715–5724 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sakamoto, H. et al. Host sphingolipid biosynthesis as a target for hepatitis C virus therapy. Nat. Chem. Biol. 1, 333–337 (2005).

    CAS  PubMed  Google Scholar 

  24. Umehara, T. et al. Serine palmitoyltransferase inhibitor suppresses HCV replication in a mouse model. Biochem. Biophys. Res. Commun. 346, 67–73 (2006).

    CAS  PubMed  Google Scholar 

  25. Hirata, Y. et al. Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis. PLoS Pathog. 8, e1002860 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Weng, L. et al. Sphingomyelin activates hepatitis C virus RNA polymerase in a genotype-specific manner. J. Virol. 84, 11761–11770 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimakami, T. et al. Protease inhibitor-resistant hepatitis C virus mutants with reduced fitness from impaired production of infectious virus. Gastroenterology 140, 667–675 (2011).

    CAS  PubMed  Google Scholar 

  28. Liu, H. et al. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J. Biol. Chem. 275, 19513–19520 (2000).

    CAS  PubMed  Google Scholar 

  29. Kapadia, S.B. & Chisari, F.V. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl. Acad. Sci. USA 102, 2561–2566 (2005).

    CAS  PubMed  Google Scholar 

  30. Lindenbach, B.D. et al. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc. Natl. Acad. Sci. USA 103, 3805–3809 (2006).

    CAS  PubMed  Google Scholar 

  31. Yanagi, M., Purcell, R.H., Emerson, S.U. & Bukh, J. Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into liver of a chimpanzee. Proc. Natl. Acad. Sci. USA 94, 8738–8743 (1997).

    CAS  PubMed  Google Scholar 

  32. Beard, M.R. et al. An infectious molecular clone of a Japanese genotype 1b hepatitis C virus. Hepatology 30, 316–324 (1999).

    CAS  PubMed  Google Scholar 

  33. Andrus, L. et al. Expression of paramyxovirus V proteins promotes replication and spread of hepatitis C virus in cultures of primary human fetal liver cells. Hepatology 54, 1901–1912 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, Y.P. et al. Highly efficient full-length hepatitis C virus genotype 1 (strain TN) infectious culture system. Proc. Natl. Acad. Sci. USA 109, 19757–19762 (2012).

    CAS  PubMed  Google Scholar 

  35. Bochkov, V.N. et al. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 12, 1009–1059 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pizzimenti, S. et al. Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front. Physiol. 4, 242 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Pitson, S.M. et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491–5500 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Alvarez, S.E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hait, N.C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jain, S.K. et al. Oxidative stress in chronic hepatitis C: not just a feature of late stage disease. J. Hepatol. 36, 805–811 (2002).

    CAS  PubMed  Google Scholar 

  41. Yano, M. et al. Comprehensive analysis of the effects of ordinary nutrients on hepatitis C virus RNA replication in cell culture. Antimicrob. Agents Chemother. 51, 2016–2027 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kohlway, A. et al. Hepatitis C virus RNA replication and virus particle assembly require specific dimerization of the NS4A protein transmembrane domain. J. Virol. 88, 628–642 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Ibrahim, W. et al. Oxidative stress and antioxidant status in mouse liver: effects of dietary lipid, vitamin E and iron. J. Nutr. 127, 1401–1406 (1997).

    CAS  PubMed  Google Scholar 

  44. Lackner, T., Muller, A., Konig, M., Thiel, H.J. & Tautz, N. Persistence of bovine viral diarrhea virus is determined by a cellular cofactor of a viral autoprotease. J. Virol. 79, 9746–9755 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Leivers, A.L. et al. Discovery of selective small molecule type iii phosphatidylinositol 4-kinase α (PI4KIIIα) inhibitors as anti hepatitis C (HCV) agents. J. Med. Chem. 57, 2091–2106 (2014).

    CAS  PubMed  Google Scholar 

  46. Oikawa, T. et al. Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology 57, 1469–1483 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmelzer, E. et al. Human hepatic stem cells from fetal and postnatal donors. J. Exp. Med. 204, 1973–1987 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Y. et al. Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates. Hepatology 52, 1443–1454 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Kubota, H. & Reid, L.M. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc. Natl. Acad. Sci. USA 97, 12132–12137 (2000).

    CAS  PubMed  Google Scholar 

  50. Ma, Y., Yates, J., Liang, Y., Lemon, S.M. & Yi, M. NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. J. Virol. 82, 7624–7639 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yanagi, M., Purcell, R.H., Emerson, S.U. & Bukh, J. Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc. Natl. Acad. Sci. USA 94, 8738–8743 (1997).

    CAS  PubMed  Google Scholar 

  52. Shimakami, T. et al. Stabilization of hepatitis C virus RNA by an Ago2–miR-122 complex. Proc. Natl. Acad. Sci. USA 109, 941–946 (2012).

    CAS  PubMed  Google Scholar 

  53. Date, T. et al. Novel cell culture-adapted genotype 2a hepatitis C virus infectious clone. J. Virol. 86, 10805–10820 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Saeed, M. et al. Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells. Antimicrob. Agents Chemother. 56, 5365–5373 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Timpe, J.M. et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47, 17–24 (2008).

    PubMed  Google Scholar 

  56. Kannan, R.P., Hensley, L.L., Evers, L.E., Lemon, S.M. & McGivern, D.R. Hepatitis C virus infection causes cell cycle arrest at the level of initiation of mitosis. J. Virol. 85, 7989–8001 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Puneet, P. et al. SphK1 regulates proinflammatory responses associated with endotoxin and polymicrobial sepsis. Science 328, 1290–1294 (2010).

    CAS  PubMed  Google Scholar 

  58. Dansako, H. et al. Class A scavenger receptor 1 (MSR1) restricts hepatitis C virus replication by mediating toll-like receptor 3 recognition of viral RNAs produced in neighboring cells. PLoS Pathog. 9, e1003345 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shaner, R.L. et al. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J. Lipid Res. 50, 1692–1707 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sullards, M.C., Liu, Y., Chen, Y. & Merrill, A.H. Jr. Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim. Biophys. Acta 1811, 838–853 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Reynolds, E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Papin, J.F., Vahrson, W. & Dittmer, D.P. SYBR green-based real-time quantitative PCR assay for detection of West Nile Virus circumvents false-negative results due to strain variability. J. Clin. Microbiol. 42, 1511–1518 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gurukumar, K.R. et al. Development of real time PCR for detection and quantitation of Dengue Viruses. Virol. J. 6, 10 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Qu, L. et al. Disruption of TLR3 signaling due to cleavage of TRIF by the hepatitis A virus protease-polymerase processing intermediate, 3CD. PLoS Pathog. 7, e1002169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahmed, R., Salmi, A., Butler, L.D., Chiller, J.M. & Oldstone, M.B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160, 521–540 (1984).

    CAS  PubMed  Google Scholar 

  66. Bartenschlager, R., Lohmann, V. & Penin, F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat. Rev. Microbiol. 11, 482–496 (2013).

    CAS  PubMed  Google Scholar 

  67. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–28 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L.F. Ping and W. Lovell for expert technical assistance, R. Purcell (US National Institute of Allergy and Infectious Diseases) and J. Bukh (Copenhagen University Hospital, Denmark) for pCV-H77C and pTNcc plasmids, C.M. Rice and M. Saeed (The Rockefeller University) for Huh-7.5 cells and S52/SG-Feo and ED43/SG-Feo plasmids, T. Wakita (National Institute of Infectious Diseases, Japan) for pJFH1 and pJFH-2 plasmids, M.J. Otto (Pharmasset) for PSI-6130, A. Sluder (SCYNEXIS) for SCY-635, R. De Francesco (Istituto Nazionale di Genetica Molecolare, Italy) for compound 23, A.Y. Howe (Merck Research Laboratory) for boceprevir, HCV-796, MK-0608 and MK-7009 and Z. Feng (University of North Carolina) for hepatitis A virus stocks. We also thank S.A. Weinman for critical reading of the manuscript and D.L. Tyrrell, M. Joyce, R.A. Coleman and T. Masaki for helpful discussions. This work was supported by US National Institutes of Health grants RO1-AI095690, RO1-CA164029 and U19-AI109965 (S.M.L.), R21-CA182322 (L.R.), R01-AI075090 (M.Y.), RO1-AI073335 (C.C.K.), RO1-DE018304 (D.P.D.), F32-AI094941 (D.G.W.) and U54-GM069338 (S.B.), a National Cancer Institute Center Core Support Grant to the Lineberger Comprehensive Cancer Center (P30-CA016086) and the University of North Carolina Cancer Research Fund. C.W. was supported by the Deutsche Forschungsgemeinschaft (WE 4388/3-1 and WE 4388/6-1). I.A. was supported by the CIPSM Cluster of Excellence.

Author information

Authors and Affiliations

Authors

Contributions

D.Y. and S.M.L. conceived the study and wrote the paper; D.Y., D.R.M., E.W., V.J.M., Y.W., P.E.C., C.E.M., D.G.W. and I.M. conducted experiments; C.W. and I.A. modeled membrane interactions of proteins; S.B. and A.H.M. Jr. carried out mass spectrometry analysis of sphingolipids; J.K.W., M.T.H., D.P.D. and C.C.K. provided reagents and supervised experiments involving viruses other than HCV; M.Y., S.K., T.S., T.O., S.M.P. and L.M.R. provided research materials; and all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Daisuke Yamane or Stanley M Lemon.

Ethics declarations

Competing interests

L.M.R. has received research support from Vesta Therapeutics and the Dow Chemical Company related to human hepatic and biliary tree stem cells. S.M.L. and D.Y. are named inventors in a U.S. Provisional Patent Application related to the H77D virus described in this paper.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–13. (PDF 6055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamane, D., McGivern, D., Wauthier, E. et al. Regulation of the hepatitis C virus RNA replicase by endogenous lipid peroxidation. Nat Med 20, 927–935 (2014). https://doi.org/10.1038/nm.3610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3610

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing