Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin

A Corrigendum to this article was published on 07 May 2015

A Corrigendum to this article was published on 08 October 2014

This article has been updated

Abstract

The N-terminal fragment of prolactin (16K PRL) inhibits tumor growth by impairing angiogenesis, but the underlying mechanisms are unknown. Here, we found that 16K PRL binds the fibrinolytic inhibitor plasminogen activator inhibitor-1 (PAI-1), which is known to contextually promote tumor angiogenesis and growth. Loss of PAI-1 abrogated the antitumoral and antiangiogenic effects of 16K PRL. PAI-1 bound the ternary complex PAI-1–urokinase-type plasminogen activator (uPA)–uPA receptor (uPAR), thereby exerting antiangiogenic effects. By inhibiting the antifibrinolytic activity of PAI-1, 16K PRL also protected mice against thromboembolism and promoted arterial clot lysis. Thus, by signaling through the PAI-1–uPA–uPAR complex, 16K PRL impairs tumor vascularization and growth and, by inhibiting the antifibrinolytic activity of PAI-1, promotes thrombolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 16K PRL interacts with PAI-1.
Figure 2: Inhibition of B16F10 tumor growth by 16K PRL is PAI-1 dependent.
Figure 3: Inhibition of keratinocyte tumor growth by 16K PRL is PAI-1 dependent.
Figure 4: PAI-1 is required for 16K PRL to impair neovascularization.
Figure 5: The in vitro antiangiogenic effects of 16K PRL require PAI-1–uPA–uPAR.
Figure 6: 16K PRL inhibits the antifibrinolytic activity of PAI-1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 25 August 2014

     In the version of this article initially published, it was stated that 16K PRL levels are increased in retinopathy, citing reference 10. However, this reference was cited incorrectly, and in fact another paper showed that 16K PRL levels are decreased in diabetic retinopathy. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Chung, A.S., Lee, J. & Ferrara, N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer 10, 505–514 (2010).

    CAS  PubMed  Google Scholar 

  2. Struman, I. et al. Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc. Natl. Acad. Sci. USA 96, 1246–1251 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Clapp, C., Aranda, J., Gonzalez, C., Jeziorski, M.C. & Martinez de la Escalera, G. Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocrinol. Metab. 17, 301–307 (2006).

    CAS  PubMed  Google Scholar 

  4. Bentzien, F., Struman, I., Martini, J.F., Martial, J. & Weiner, R. Expression of the antiangiogenic factor 16K hPRL in human HCT116 colon cancer cells inhibits tumor growth in Rag1−/− mice. Cancer Res. 61, 7356–7362 (2001).

    CAS  PubMed  Google Scholar 

  5. Kim, J. et al. Antitumor activity of the 16-kDa prolactin fragment in prostate cancer. Cancer Res. 63, 386–393 (2003).

    CAS  PubMed  Google Scholar 

  6. Kinet, V. et al. Antiangiogenic liposomal gene therapy with 16K human prolactin efficiently reduces tumor growth. Cancer Lett. 284, 222–228 (2009).

    CAS  PubMed  Google Scholar 

  7. Nguyen, N.Q. et al. Inhibition of tumor growth and metastasis establishment by adenovirus-mediated gene transfer delivery of the antiangiogenic factor 16K hPRL. Mol. Ther. 15, 2094–2100 (2007).

    CAS  PubMed  Google Scholar 

  8. Tabruyn, S.P. et al. The angiostatic 16K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-κB activation. Mol. Endocrinol. 21, 1422–1429 (2007).

    CAS  PubMed  Google Scholar 

  9. Nguyen, N.Q. et al. The antiangiogenic 16K prolactin impairs functional tumor neovascularization by inhibiting vessel maturation. PLoS ONE 6, e27318 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Triebel, J. & Ramadori, G. Investigation of prolactin-related vasoinhibin in sera from patients with diabetic retinopathy. Eur. J. Endocrinol. 161, 345–353 (2009).

    CAS  PubMed  Google Scholar 

  11. González, C. et al. Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. Lab. Invest. 87, 1009–1017 (2007).

    PubMed  Google Scholar 

  12. Hilfiker-Kleiner, D. et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128, 589–600 (2007).

    CAS  PubMed  Google Scholar 

  13. Halkein, J. et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J. Clin. Invest. 123, 2143–2154 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tabruyn, S.P., Nguyen, N.Q., Cornet, A.M., Martial, J.A. & Struman, I. The antiangiogenic factor, 16-kDa human prolactin, induces endothelial cell cycle arrest by acting at both the G0–G1 and the G2-M phases. Mol. Endocrinol. 19, 1932–1942 (2005).

    CAS  PubMed  Google Scholar 

  15. D'Angelo, G. et al. 16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol. Endocrinol. 13, 692–704 (1999).

    CAS  PubMed  Google Scholar 

  16. D'Angelo, G., Struman, I., Martial, J. & Weiner, R.I. Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc. Natl. Acad. Sci. USA 92, 6374–6378 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tabruyn, S.P. et al. The antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-κB. Mol. Endocrinol. 17, 1815–1823 (2003).

    CAS  PubMed  Google Scholar 

  18. Clapp, C. & Weiner, R.I. A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 130, 1380–1386 (1992).

    CAS  PubMed  Google Scholar 

  19. Rijken, D.C., Wijngaards, G. & Welbergen, J. Immunological characterization of plasminogen activator activities in human tissues and body fluids. J. Lab. Clin. Med. 97, 477–486 (1981).

    CAS  PubMed  Google Scholar 

  20. Eitzman, D.T., Krauss, J.C., Shen, T., Cui, J. & Ginsburg Lack of plasminogen activator inhibitor-1 effect in a transgenic mouse model of metastatic melanoma. Blood 87, 4718–4722 (1996).

    CAS  PubMed  Google Scholar 

  21. Carmeliet, P. et al. Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation 96, 3180–3191 (1997).

    CAS  PubMed  Google Scholar 

  22. Bajou, K. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4, 923–928 (1998).

    CAS  PubMed  Google Scholar 

  23. Bajou, K. et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J. Cell Biol. 152, 777–784 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bajou, K. et al. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene 23, 6986–6990 (2004).

    CAS  PubMed  Google Scholar 

  25. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. McMahon, G.A. et al. Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J. Biol. Chem. 276, 33964–33968 (2001).

    CAS  PubMed  Google Scholar 

  27. Binder, B.R., Mihaly, J. & Prager, G.W. uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist's view. Thromb. Haemost. 97, 336–342 (2007).

    CAS  PubMed  Google Scholar 

  28. Conese, M. et al. α-2 Macroglobulin receptor/Ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor. J. Cell Biol. 131, 1609–1622 (1995).

    CAS  PubMed  Google Scholar 

  29. Lee, S.H., Kunz, J., Lin, S.H. & Yu-Lee, L.Y. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res. 67, 11045–11053 (2007).

    CAS  PubMed  Google Scholar 

  30. Martini, J.F. et al. The antiangiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol. Endocrinol. 14, 1536–1549 (2000).

    CAS  PubMed  Google Scholar 

  31. Declerck, P.J. et al. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J. Biol. Chem. 263, 15454–15461 (1988).

    CAS  PubMed  Google Scholar 

  32. Seiffert, D. & Loskutoff, D.J. Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin B domain of vitronectin. J. Biol. Chem. 266, 2824–2830 (1991).

    CAS  PubMed  Google Scholar 

  33. Mutch, N.J., Thomas, L., Moore, N.R., Lisiak, K.M. & Booth, N.A. TAFIa, PAI-1 and α-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J. Thromb. Haemost. 5, 812–817 (2007).

    CAS  PubMed  Google Scholar 

  34. Zhu, Y., Carmeliet, P. & Fay, W.P. Plasminogen activator inhibitor-1 is a major determinant of arterial thrombolysis resistance. Circulation 99, 3050–3055 (1999).

    CAS  PubMed  Google Scholar 

  35. Shu, E., Matsuno, H., Ishisaki, A., Kitajima, Y. & Kozawa, O. Lack of plasminogen activator inhibitor-1 enhances the preventive effect of DX-9065a, a selective factor Xa inhibitor, on venous thrombus and acute pulmonary embolism in mice. Pathophysiol. Haemost. Thromb. 33, 206–213 (2003).

    CAS  PubMed  Google Scholar 

  36. Blasi, F. Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioessays 15, 105–111 (1993).

    CAS  PubMed  Google Scholar 

  37. Prager, G.W. et al. Urokinase mediates endothelial cell survival via induction of the X-linked inhibitor of apoptosis protein. Blood 113, 1383–1390 (2009).

    CAS  PubMed  Google Scholar 

  38. LaRusch, G.A. et al. Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis. Blood 115, 5111–5120 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith, L.H. et al. Pivotal role of PAI-1 in a murine model of hepatic vein thrombosis. Blood 107, 132–134 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsantes, A.E. et al. The effect of the plasminogen activator inhibitor-1 4G/5G polymorphism on the thrombotic risk. Thromb. Res. 122, 736–742 (2008).

    CAS  PubMed  Google Scholar 

  41. Nalluri, S.R., Chu, D., Keresztes, R., Zhu, X. & Wu, S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. J. Am. Med. Assoc. 300, 2277–2285 (2008).

    CAS  Google Scholar 

  42. Scappaticci, F.A. et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J. Natl. Cancer Inst. 99, 1232–1239 (2007).

    PubMed  Google Scholar 

  43. Zangari, M. et al. Thrombotic events in patients with cancer receiving antiangiogenesis agents. J. Clin. Oncol. 27, 4865–4873 (2009).

    CAS  PubMed  Google Scholar 

  44. Nar, H. et al. Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation. J. Mol. Biol. 297, 683–695 (2000).

    CAS  PubMed  Google Scholar 

  45. Gils, A., Knockaert, I. & Declerck, P.J. Substrate behavior of plasminogen activator inhibitor-1 is not associated with a lack of insertion of the reactive site loop. Biochemistry 35, 7474–7481 (1996).

    CAS  PubMed  Google Scholar 

  46. Thijssen, V.L. et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc. Natl. Acad. Sci. USA 103, 15975–15980 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaffe, E.A., Nachman, R.L., Becker, C.G. & Minick, C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745–2756 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fusenig, N.E., Amer, S.M., Boukamp, P. & Worst, P.K. Characteristics of chemically transformed mouse epidermal cells in vitro and in vivo. Bull. Cancer 65, 271–279 (1978).

    CAS  PubMed  Google Scholar 

  49. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − Δ Δ C t ) Method. Methods 25, 402–408 (2001).

    CAS  PubMed  Google Scholar 

  50. Sabatel, C. et al. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS ONE 6, e16979 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ngo, T.H., Debrock, S. & Declerck, P.J. Identification of functional synergism between monoclonal antibodies. Application to the enhancement of plasminogen activator inhibitor-1 neutralizing effects. FEBS Lett. 416, 373–376 (1997).

    CAS  PubMed  Google Scholar 

  52. Carmeliet, P. et al. Plasminogen activator inhibitor-1 gene-deficient mice. I. Generation by homologous recombination and characterization. J. Clin. Invest. 92, 2746–2755 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bajou, K. et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell 14, 324–334 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Carmeliet, P. et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368, 419–424 (1994).

    CAS  PubMed  Google Scholar 

  55. Passaniti, A. et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67, 519–528 (1992).

    CAS  PubMed  Google Scholar 

  56. Vercauteren, E. et al. Evaluation of the profibrinolytic properties of an anti-TAFI monoclonal antibody in a mouse thromboembolism model. Blood 117, 4615–4622 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.-M. Foidart for helpful discussions. We also thank A. Igout, O. Jacquin and M. Galleni for assisting with SPR, E. Rozet for helping with statistical analysis, R. Lijnen (Center for Molecular and Vascular Biology) for providing the PAI-1 ELISA and N. Fusenig (German Cancer Research) for providing BD VII cells. We thank the technology platforms support staff at the GIGA Research Center and P. Drion of the mouse facility (GIGA). This study was supported by the University of Liège, the Fonds pour la Recherche Industrielle et Agricole (FRIA), Belgium, the Fonds National de la Recherche Scientifique (FNRS), Belgium, the Belgian Federal Science Policy Office grant IUAP06/30 (to I.S., A.N. and P.C.), Neoangio program grant no. 616476 from the 'Service Public de Wallonie' (to I.S. and A.N.), the Belgian Foundation against Cancer, Televie, the Léon Frédéricq Fund and the Centre Anticancéreux (Liège, Belgium) and Dutch Cancer Society grants UM2008-4101 and VU2009-4358 (to V.L.T. and A.W.G.). The work of P.C. is supported by the Belgian Science Policy (IAP no. P7/03), the Leducq Network of Excellence, the Flanders Research Foundation (FWO), the Foundation against Cancer, European Research Council Advanced Research Grant EU-ERC269073 and long-term structural Methusalem funding by the Flemish Government.

Author information

Authors and Affiliations

Authors

Contributions

K.B. and S.H. designed, supervised and conducted the experiments, performed in vitro and in vivo studies and statistical analyses, interpreted the data and wrote the manuscript. K.B. performed tumor studies, Matrigel plug assays and pulmonary embolism and in vitro studies. S.H., N.-Q.-N.N. and O.N. performed arterial thrombolysis experiments. S.H., S.T., O.N. and S.V. performed retinal angiogenesis experiments. V.L.T. and A.W.G. participated in designing the yeast two-hybrid experiments and in data interpretation. S.D. performed the SPR studies. J.-Y.C. participated in in vitro and in vivo studies. C.P. and M.L. participated in in vitro studies. M.S. performed immunohistochemistry staining and analysis. A.N. participated in data analysis, provided scientific suggestions and contributed to the manuscript review. A.G. and P.J.D. performed the SPR analyses and participated in experiments on PAI-1 antiproteolytic activities. A.B., I.C. and S.V. contributed to in vivo experiment analysis and setup. J.A.M. conceived the study and revised the manuscript. M.D. and P.C. contributed to the experimental analysis and setup and participated in writing the manuscript. I.S. conceived and designed the study, performed yeast-two-hybrid screening, coordinated the experiments and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ingrid Struman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajou, K., Herkenne, S., Thijssen, V. et al. PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nat Med 20, 741–747 (2014). https://doi.org/10.1038/nm.3552

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3552

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing