Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia

Abstract

Cardiomyocyte T tubules are important for regulating ion flux. Bridging integrator 1 (BIN1) is a T-tubule protein associated with calcium channel trafficking that is downregulated in failing hearts. Here we find that cardiac T tubules normally contain dense protective inner membrane folds that are formed by a cardiac isoform of BIN1. In mice with cardiac Bin1 deletion, T-tubule folding is decreased, which does not change overall cardiomyocyte morphology but leads to free diffusion of local extracellular calcium and potassium ions, prolonging action-potential duration and increasing susceptibility to ventricular arrhythmias. We also found that T-tubule inner folds are rescued by expression of the BIN1 isoform BIN1+13+17, which promotes N-WASP–dependent actin polymerization to stabilize the T-tubule membrane at cardiac Z discs. BIN1+13+17 recruits actin to fold the T-tubule membrane, creating a 'fuzzy space' that protectively restricts ion flux. When the amount of the BIN1+13+17 isoform is decreased, as occurs in acquired cardiomyopathy, T-tubule morphology is altered, and arrhythmia can result.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiomyocyte T tubules are densely folded by BIN1.
Figure 2: Bin1 deletion increases extracellular Ca2+ diffusion.
Figure 3: Bin1 deletion increases extracellular K+ diffusion, prolonging action-potential duration and increasing ventricular ectopy.
Figure 4: Ventricular arrhythmias induced by pacing and β adrenergic activation with isoproterenol.
Figure 5: Adult mouse cardiomyocytes express four Bin1 splice variants.
Figure 6: BIN1+13+17 uses F-actin to connect to Z-disc α-actinin.

Similar content being viewed by others

References

  1. Soeller, C. & Cannell, M.B. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ. Res. 84, 266–275 (1999).

    CAS  PubMed  Google Scholar 

  2. Brette, F. & Orchard, C. T-tubule function in mammalian cardiac myocytes. Circ. Res. 92, 1182–1192 (2003).

    CAS  PubMed  Google Scholar 

  3. Cheng, H., Lederer, W.J. & Cannell, M.B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744 (1993).

    CAS  PubMed  Google Scholar 

  4. Bers, D.M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    CAS  PubMed  Google Scholar 

  5. Pásek, M., Simurda, J. & Christe, G. The functional role of cardiac T-tubules explored in a model of rat ventricular myocytes. Philos. Trans. A. Math. Phys. Eng. Sci. 364, 1187–1206 (2006).

    PubMed  Google Scholar 

  6. Lederer, W.J., Niggli, E. & Hadley, R.W. Sodium-calcium exchange in excitable cells: fuzzy space. Science 248, 283 (1990).

    CAS  PubMed  Google Scholar 

  7. Shepherd, N. & McDonough, H.B. Ionic diffusion in transverse tubules of cardiac ventricular myocytes. Am. J. Physiol. 275, H852–H860 (1998).

    CAS  PubMed  Google Scholar 

  8. Swift, F., Stromme, T.A., Amundsen, B., Sejersted, O.M. & Sjaastad, I. Slow diffusion of K+ in the T tubules of rat cardiomyocytes. J. Appl. Physiol. 101, 1170–1176 (2006).

    PubMed  Google Scholar 

  9. Parfenov, A.S., Salnikov, V., Lederer, W.J. & Lukyanenko, V. Aqueous diffusion pathways as a part of the ventricular cell ultrastructure. Biophys. J. 90, 1107–1119 (2006).

    CAS  PubMed  Google Scholar 

  10. Pásek, M., Simurda, J. & Orchard, C.H. Role of T-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte. Eur. Biophys. J. 41, 491–503 (2012).

    PubMed  Google Scholar 

  11. Pásek, M., Simurda, J., Orchard, C.H. & Christe, G. A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse-axial tubular system. Prog. Biophys. Mol. Biol. 96, 258–280 (2008).

    PubMed  Google Scholar 

  12. Lyon, A.R. et al. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc. Natl. Acad. Sci. USA 106, 6854–6859 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei, S. et al. T-tubule remodeling during transition from hypertrophy to heart failure. Circ. Res. 107, 520–531 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wagner, E. et al. Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ. Res. 111, 402–414 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Aiba, T. & Tomaselli, G.F. Electrical remodeling in the failing heart. Curr. Opin. Cardiol. 25, 29–36 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Sipido, K.R. Calcium overload, spontaneous calcium release, and ventricular arrhythmias. Heart Rhythm 3, 977–979 (2006).

    PubMed  Google Scholar 

  17. Lee, E. et al. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297, 1193–1196 (2002).

    CAS  PubMed  Google Scholar 

  18. Hong, T.T. et al. BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol. 8, e1000312 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Hong, T.T. et al. BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm 9, 812–820 (2012).

    PubMed  Google Scholar 

  20. Lyon, A.R. et al. Plasticity of surface structures and β2-adrenergic receptor localization in failing ventricular cardiomyocytes during recovery from heart failure. Circ Heart Fail 5, 357–365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Böhm, J. et al. Case report of intrafamilial variability in autosomal recessive centronuclear myopathy associated to a novel BIN1 stop mutation. Orphanet J. Rare Dis. 5, 35 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Muller, A.J. et al. Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol. Cell. Biol. 23, 4295–4306 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Agah, R. et al. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 100, 169–179 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang, M. Y. et al. Bin1 ablation in mammary gland delays tissue remodeling and drives cancer progression. Cancer Res. 67, 100–107 (2007).

    CAS  PubMed  Google Scholar 

  25. Goonasekera, S.A. et al. Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. J. Clin. Invest. 122, 280–290 (2012).

    CAS  PubMed  Google Scholar 

  26. Kawai, M., Hussain, M. & Orchard, C.H. Excitation-contraction coupling in rat ventricular myocytes after formamide-induced detubulation. Am. J. Physiol. 277, H603–H609 (1999).

    CAS  PubMed  Google Scholar 

  27. Hepler, P.K. Membranes in the mitotic apparatus of barley cells. J. Cell Biol. 86, 490–499 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Franzini-Armstrong, C. Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Dev. Biol. 146, 353–363 (1991).

    CAS  PubMed  Google Scholar 

  29. Komukai, K., Brette, F., Yamanushi, T.T. & Orchard, C.H. K+ current distribution in rat sub-epicardial ventricular myocytes. Pflugers Arch. 444, 532–538 (2002).

    CAS  PubMed  Google Scholar 

  30. Pásek, M. et al. Quantification of T-tubule area and protein distribution in rat cardiac ventricular myocytes. Prog. Biophys. Mol. Biol. 96, 244–257 (2008).

    PubMed  Google Scholar 

  31. Shaw, R.M. & Rudy, Y. Electrophysiologic effects of acute myocardial ischemia. A mechanistic investigation of action potential conduction and conduction failure. Circ. Res. 80, 124–138 (1997).

    CAS  PubMed  Google Scholar 

  32. Mathur, N. et al. Sudden infant death syndrome in mice with an inherited mutation in RyR2. Circ. Arrhythm. Electrophysiol. 2, 677–685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kannankeril, P.J. et al. Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc. Natl. Acad. Sci. USA 103, 12179–12184 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Marban, E., Robinson, S.W. & Wier, W.G. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J. Clin. Invest. 78, 1185–1192 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tian, Q. et al. Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement. J. Mol. Cell. Cardiol. 52, 113–124 (2012).

    CAS  PubMed  Google Scholar 

  36. Yamada, H. et al. Dynamic interaction of amphiphysin with N-WASP regulates actin assembly. J. Biol. Chem. 284, 34244–34256 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaur, N., Rudy, Y. & Hool, L. Contributions of ion channel currents to ventricular action potential changes and induction of early afterdepolarizations during acute hypoxia. Circ. Res. 105, 1196–1203 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, J.M., Bursac, N. & Henriquez, C.S. A computer model of engineered cardiac monolayers. Biophys. J. 98, 1762–1771 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gez, L.S., Hagalili, Y., Shainberg, A. & Atlas, D. Voltage-driven Ca2+ binding at the L-type Ca2+ channel triggers cardiac excitation-contraction coupling prior to Ca2+ influx. Biochemistry 51, 9658–9666 (2012).

    CAS  PubMed  Google Scholar 

  40. Taylor, M.J., Perrais, D. & Merrifield, C.J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Butler, M.H. et al. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J. Cell Biol. 137, 1355–1367 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Böhm, J. et al. Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy. PLoS Genet. 9, e1003430 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Ge, K. et al. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc. Natl. Acad. Sci. USA 96, 9689–9694 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakamuro, D., Elliott, K.J., Wechsler-Reya, R. & Prendergast, G.C. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat. Genet. 14, 69–77 (1996).

    CAS  PubMed  Google Scholar 

  45. Elliott, K. et al. Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene 18, 3564–3573 (1999).

    CAS  PubMed  Google Scholar 

  46. Kashef, F. et al. Ankyrin-B protein in heart failure: identification of a new component of metazoan cardioprotection. J. Biol. Chem. 287, 30268–30281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Beuckelmann, D.J., Nabauer, M. & Erdmann, E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73, 379–385 (1993).

    CAS  PubMed  Google Scholar 

  48. Smyth, J.W. et al. Actin cytoskeleton rest stops regulate anterograde traffic of connexin 43 vesicles to the plasma membrane. Circ. Res. 110, 978–989 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. O'Connell, T.D., Rodrigo, M.C. & Simpson, P.C. Isolation and culture of adult mouse cardiac myocytes. Methods Mol. Biol. 357, 271–296 (2007).

    CAS  PubMed  Google Scholar 

  50. Hattori, F. et al. Nongenetic method for purifying stem cell–derived cardiomyocytes. Nat. Methods 7, 61–66 (2010).

    CAS  PubMed  Google Scholar 

  51. Leach, R.N., Desai, J.C. & Orchard, C.H. Effect of cytoskeleton disruptors on L-type Ca channel distribution in rat ventricular myocytes. Cell Calcium 38, 515–526 (2005).

    CAS  PubMed  Google Scholar 

  52. Novak, P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6, 279–281 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  54. Mastronarde, D.N. Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120, 343–352 (1997).

    CAS  PubMed  Google Scholar 

  55. Shorten, P.R. & Soboleva, T.K. Anomalous ion diffusion within skeletal muscle transverse tubule networks. Theor. Biol. Med. Model. 4, 18 (2007).

    PubMed  PubMed Central  Google Scholar 

  56. Kits, K.S., de Vlieger, T.A., Kooi, B.W. & Mansvelder, H.D. Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles. Biophys. J. 76, 1693–1705 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Press, W. Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

  58. Higham, N.J. Optimization by direct search in matrix computations. SIAM J. Matrix Anal. Appl. 14, 317–333 (1993).

    Google Scholar 

  59. Nguyen, D.T., Ding, C., Wilson, E., Marcus, G.M. & Olgin, J.E. Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm 7, 1438–1445 (2010).

    PubMed  Google Scholar 

  60. Salama, G., Kanai, A. & Efimov, I.R. Subthreshold stimulation of Purkinje fibers interrupts ventricular tachycardia in intact hearts. Experimental study with voltage-sensitive dyes and imaging techniques. Circ. Res. 74, 604–619 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R01 HL094414 (R.M.S.), R37 MH065334 (L.Y.J.), WT090594 (J.G.), R21 GM100224 (M.G.), T32 HL116273 (S.-S.Z.) and K99/R00 HL109075 (T.H.) and by the American Heart Association (S.-S.Z. and R.M.S.). L.Y.J. is a Howard Hughes Medical Institute investigator. We thank E. Cingolani for helpful advice on designing the in vivo pacing protocol, D. Laury-Kleintop and G.C. Prendergast from the Lankenau Institute for Medical Research for Bin1-loxP mice, J. Mulholland and J.J. Perrino for TEM imaging at the Electron Microscopy Core of the Cell Sciences Imaging Facility at the Stanford University Medical Center, J. Smyth and R. Wirka for helpful discussions and T.S. Fong and T. Hitzeman for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study design, analysis of the data and writing of the paper. T.H. was involved in the design and performance of all key experiments. H.Y. did the patch-clamp experiments. S.-S.Z. prepared mouse crossing, adenovirus and Bin1 cloning experiments. H.C.C. and B.S. did the in vivo arrhythmia experiments. M.K. performed the actin polymerization assay. A.B. did the scanning ion-conductance microscopy imaging and analysis of T-tubule topology. H.Z. did the optical mapping studies. M.G. did the mathematical modeling.

Corresponding author

Correspondence to Robin M Shaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 3389 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, T., Yang, H., Zhang, SS. et al. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20, 624–632 (2014). https://doi.org/10.1038/nm.3543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3543

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing