Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential role for autophagy in the maintenance of immunological memory against influenza infection

This article has been updated

Abstract

Vaccination has been the most widely used strategy to protect against viral infections for centuries. However, the molecular mechanisms governing the long-term persistence of immunological memory in response to vaccines remain unclear. Here we show that autophagy has a critical role in the maintenance of memory B cells that protect against influenza virus infection. Memory B cells displayed elevated levels of basal autophagy with increased expression of genes that regulate autophagy initiation or autophagosome maturation. Mice with B cell–specific deletion of Atg7 (B/Atg7−/− mice) showed normal primary antibody responses after immunization against influenza but failed to generate protective secondary antibody responses when challenged with influenza viruses, resulting in high viral loads, widespread lung destruction and increased fatality. Our results suggest that autophagy is essential for the survival of virus-specific memory B cells in mice and the maintenance of protective antibody responses required to combat infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decreased spontaneous cell death and caspase signaling but constitutive autophagy in memory B cells.
Figure 2: Increased cell death in autophagy-deficient memory B cells.
Figure 3: Normal primary but defective secondary antibody responses in B/Atg7−/− mice.
Figure 4: Loss of memory B cells in the absence of Atg7.
Figure 5: Defective memory B cell responses to influenza infection in B/Atg7−/− mice.
Figure 6: B/Atg7−/− mice are defective in mounting protective immunity against influenza virus.

Similar content being viewed by others

Change history

  • 28 April 2014

     In the version of this article initially published online, the legend for Figure 3c,d was incorrect. The mice used in Figure 3c,d were immunized as in Figure 3b, not as in Figure 3a. The error has been corrected for all versions of this article.

References

  1. Pulendran, B. & Ahmed, R. Immunological mechanisms of vaccination. Nat. Immunol. 12, 509–517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lenardo, M. et al. Mature T lymphocyte apoptosis—immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Strasser, A., Jost, P.J. & Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krammer, P.H., Arnold, R. & Lavrik, I.N. Life and death in peripheral T cells. Nat. Rev. Immunol. 7, 532–542 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Kalia, V., Sarkar, S., Gourley, T.S., Rouse, B.T. & Ahmed, R. Differentiation of memory B and T cells. Curr. Opin. Immunol. 18, 255–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. McHeyzer-Williams, M., Okitsu, S., Wang, N. & McHeyzer-Williams, L. Molecular programming of B cell memory. Nat. Rev. Immunol. 12, 24–34 (2012).

    Article  CAS  Google Scholar 

  8. Kurosaki, T., Aiba, Y., Kometani, K., Moriyama, S. & Takahashi, Y. Unique properties of memory B cells of different isotypes. Immunol. Rev. 237, 104–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Kasturi, S.P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pape, K.A., Taylor, J.J., Maul, R.W., Gearhart, P.J. & Jenkins, M.K. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331, 1203–1207 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ridderstad, A. & Tarlinton, D.M. Kinetics of establishing the memory B cell population as revealed by CD38 expression. J. Immunol. 160, 4688–4695 (1998).

    CAS  PubMed  Google Scholar 

  12. Shlomchik, M.J. & Weisel, F. Germinal center selection and the development of memory B and plasma cells. Immunol. Rev. 247, 52–63 (2012).

    Article  PubMed  Google Scholar 

  13. McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Burton, D.R. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Neumann, G., Noda, T. & Kawaoka, Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459, 931–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakaya, H.I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, X. et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455, 532–536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Riet, E., Ainai, A., Suzuki, T. & Hasegawa, H. Mucosal IgA responses in influenza virus infections; thoughts for vaccine design. Vaccine 30, 5893–5900 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Gomez Lorenzo, M.M. & Fenton, M.J. Immunobiology of influenza vaccines. Chest 143, 502–510 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Maruyama, M., Lam, K.P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Smith, K.G. et al. Bcl-2 transgene expression inhibits apoptosis in the germinal center and reveals differences in the selection of memory B cells and bone marrow antibody-forming cells. J. Exp. Med. 191, 475–484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fischer, S.F. et al. Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood 110, 3978–3984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clybouw, C. et al. Regulation of memory B-cell survival by the BH3-only protein Puma. Blood 118, 4120–4128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levine, B. & Klionsky, D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Deretic, V. Autophagy in infection. Curr. Opin. Cell Biol. 22, 252–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levine, B., Mizushima, N. & Virgin, H.W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lum, J.J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Pengo, N. et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14, 298–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Kabeya, Y. et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117, 2805–2812 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Russell, R.C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741–750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang, X.H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang, C. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 8, 688–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19, 5360–5372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie, Z. & Klionsky, D.J. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9, 1102–1109 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Seglen, P.O. & Gordon, P.B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA 79, 1889–1892 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller, B.C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi, Y., Ohta, H. & Takemori, T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14, 181–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Lebecque, S., de Bouteiller, O., Arpin, C., Banchereau, J. & Liu, Y.J. Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J. Exp. Med. 185, 563–571 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Caserta, T.M., Smith, A.N., Gultice, A.D., Reedy, M.A. & Brown, T.L. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8, 345–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, H.J. et al. NecroX as a novel class of mitochondrial reactive oxygen species and ONOO scavenger. Arch. Pharm. Res. 33, 1813–1823 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Mitchell, J., Jiang, H., Berry, L. & Meyrick, B. Effect of antioxidants on lipopolysaccharide-stimulated induction of mangano superoxide dismutase mRNA in bovine pulmonary artery endothelial cells. J. Cell. Physiol. 169, 333–340 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Reddan, J.R. et al. The superoxide dismutase mimic TEMPOL protects cultured rabbit lens epithelial cells from hydrogen peroxide insult. Exp. Eye Res. 56, 543–554 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Green, D.R., Galluzzi, L. & Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333, 1109–1112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gottlieb, E., Vander Heiden, M.G. & Thompson, C.B. Bcl-xL prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor α-induced apoptosis. Mol. Cell. Biol. 20, 5680–5689 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guéraud, F. et al. Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 44, 1098–1124 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Drummen, G.P., van Liebergen, L.C., Op den Kamp, J.A. & Post, J.A. C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic. Biol. Med. 33, 473–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Catalá, A. Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”. Biochimie 94, 101–109 (2012).

    Article  PubMed  CAS  Google Scholar 

  53. Maccarrone, M., Catani, M.V., Agro, A.F. & Melino, G. Involvement of 5-lipoxygenase in programmed cell death of cancer cells. Cell Death Differ. 4, 396–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Costa-Junior, H.M. et al. ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat. 88, 51–61 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Ezekwudo, D.E., Wang, R.C. & Elegbede, J.A. Methyl jasmonate induced apoptosis in human prostate carcinoma cells via 5-lipoxygenase dependent pathway. J. Exp. Ther. Oncol. 6, 267–277 (2007).

    CAS  PubMed  Google Scholar 

  56. Hamouda, T. et al. Efficacy, immunogenicity and stability of a novel intranasal nanoemulsion-adjuvanted influenza vaccine in a murine model. Hum. Vaccin. 6, 585–594 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. McKinstry, K.K. et al. IL-10 deficiency unleashes an influenza-specific TH17 response and enhances survival against high-dose challenge. J. Immunol. 182, 7353–7363 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Tai, W. et al. Multistrain influenza protection induced by a nanoparticulate mucosal immunotherapeutic. Mucosal Immunol. 4, 197–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O. & Klionsky, D.J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 6, 304–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Förster, I. & Rajewsky, K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc. Natl. Acad. Sci. USA 87, 4781–4784 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kheradmand, F. et al. A protease-activated pathway underlying Th cell type 2 activation and allergic lung disease. J. Immunol. 169, 5904–5911 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Hornung, F., Zheng, L. & Lenardo, M.J. Maintenance of clonotype specificity in CD95/Apo-1/Fas-mediated apoptosis of mature T lymphocytes. J. Immunol. 159, 3816–3822 (1997).

    CAS  PubMed  Google Scholar 

  64. Grumelli, S. et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med. 1, e8 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Komatsu of Tokyo Metropolitan Institute of Medical Science for providing Atg7flox/flox mice. We thank M. Schaefer and L.-Z. Song for technical assistance. This work was supported by grants from the US National Institutes of Health to J.W. (R01 GM087710), M.C. (R01DK083164), D.B.C. and F.K. (R01HL117181) and a US Department of Veterans Affairs merit award (to D.B.C. and F.K.).

Author information

Authors and Affiliations

Authors

Contributions

M.C. designed and performed experiments, analyzed data and wrote the manuscript; M.J.H. performed viral infection, determined lung pathology and analyzed data; H.S. and L.W. performed experiments; X.S. assisted with experiments; B.E.G. provided the virus and advised on viral infections; D.B.C. and F.K. advised on influenza experiments and obtained human samples; and J.W. designed the study, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Min Chen or Jin Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 4805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Hong, M., Sun, H. et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med 20, 503–510 (2014). https://doi.org/10.1038/nm.3521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing