Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo

Abstract

Mitochondrial redox signals have a central role in neuronal physiology and disease. Here we describe a new optical approach to measure fast redox signals with single-organelle resolution in living mice that express genetically encoded redox biosensors in their neuronal mitochondria. Moreover, we demonstrate how parallel measurements with several biosensors can integrate these redox signals into a comprehensive characterization of mitochondrial function. This approach revealed that axonal mitochondria undergo spontaneous 'contractions' that are accompanied by reversible redox changes. These contractions are amplified by neuronal activity and acute or chronic neuronal insults. Multiparametric imaging reveals that contractions constitute respiratory chain–dependent episodes of depolarization coinciding with matrix alkalinization, followed by uncoupling. In contrast, permanent mitochondrial damage after spinal cord injury depends on calcium influx and mitochondrial permeability transition. Thus, our approach allows us to identify heterogeneity among physiological and pathological redox signals, correlate such signals to functional and structural organelle dynamics and dissect the underlying mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thy1-mito-Grx1-roGFP2 mice allow quantification of the mitochondrial glutathione redox potential in situ.
Figure 2: Mitochondria undergo spontaneous, reversible contractions.
Figure 3: Mitochondrial contractions occur in response to physiological and pathological stressors.
Figure 4: Axotomy induces spreading mitochondrial oxidation and structural alterations caused by the influx of extracellular calcium.

Similar content being viewed by others

References

  1. D'Autréaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  Google Scholar 

  2. Albrecht, S.C., Barata, A.G., Großhans, J., Teleman, A.A. & Dick, T.P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 14, 819–829 (2011).

    Article  CAS  Google Scholar 

  3. Niethammer, P., Grabher, C., Look, A.T. & Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    Article  CAS  Google Scholar 

  4. Dickinson, B.C., Peltier, J., Stone, D., Schaffer, D.V. & Chang, C.J. Nox2 redox signaling maintains essential cell populations in the brain. Nat. Chem. Biol. 7, 106–112 (2011).

    Article  CAS  Google Scholar 

  5. Guarente, L. Mitochondria—A nexus for aging, calorie restriction, and sirtuins? Cell 132, 171–176 (2008).

    Article  CAS  Google Scholar 

  6. Lin, M.T. & Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).

    Article  CAS  Google Scholar 

  7. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  Google Scholar 

  8. Zorov, D.B., Filburn, C.R., Klotz, L.O., Zweier, J.L. & Sollott, S.J. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 192, 1001–1014 (2000).

    Article  CAS  Google Scholar 

  9. Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).

    Article  CAS  Google Scholar 

  10. Mahad, D.J. et al. Mitochondrial changes within axons in multiple sclerosis. Brain 132, 1161–1174 (2009).

    Article  Google Scholar 

  11. Nikić, I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499 (2011).

    Article  Google Scholar 

  12. Sullivan, P.G., Krishnamurthy, S., Patel, S.P., Pandya, J.D. & Rabchevsky, A.G. Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J. Neurotrauma 24, 991–999 (2007).

    Article  Google Scholar 

  13. Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559 (2008).

    Article  CAS  Google Scholar 

  14. Misgeld, T., Kerschensteiner, M., Bareyre, F.M., Burgess, R.W. & Lichtman, J.W. Imaging axonal transport of mitochondria in vivo. Nat. Methods 4, 559–561 (2007).

    Article  CAS  Google Scholar 

  15. Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  Google Scholar 

  16. Kerschensteiner, M., Schwab, M.E., Lichtman, J.W. & Misgeld, T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat. Med. 11, 572–577 (2005).

    Article  CAS  Google Scholar 

  17. Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5, 805–811 (2008).

    Article  CAS  Google Scholar 

  18. Wardman, P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43, 995–1022 (2007).

    Article  CAS  Google Scholar 

  19. Belousov, V.V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    Article  CAS  Google Scholar 

  20. Schwarzländer, M., Logan, D.C., Fricker, M.D. & Sweetlove, L.J. The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide 'flashes'. Biochem. J. 437, 381–387 (2011).

    Article  Google Scholar 

  21. Hansen, J.M., Go, Y.-M. & Jones, D.P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol. 46, 215–234 (2006).

    Article  CAS  Google Scholar 

  22. Dooley, C.T. et al. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293 (2004).

    Article  CAS  Google Scholar 

  23. Schwarzländer, M. et al. Mitochondrial 'flashes': a radical concept repHined. Trends Cell Biol. 22, 503–508 (2012).

    Article  Google Scholar 

  24. Poburko, D., Santo-Domingo, J. & Demaurex, N. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J. Biol. Chem. 286, 11672–11684 (2011).

    Article  CAS  Google Scholar 

  25. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  CAS  Google Scholar 

  26. Wang, J.-Q. et al. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease. J. Biol. Chem. 288, 3070–3084 (2013).

    Article  CAS  Google Scholar 

  27. Schinzel, A.C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 102, 12005–12010 (2005).

    Article  CAS  Google Scholar 

  28. Keller, J.N. et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–697 (1998).

    Article  CAS  Google Scholar 

  29. Yanik, M.F. et al. Neurosurgery: functional regeneration after laser axotomy. Nature 432, 822 (2004).

    Article  CAS  Google Scholar 

  30. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article  CAS  Google Scholar 

  31. Love, N.R. et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 15, 222–228 (2013).

    Article  CAS  Google Scholar 

  32. Rieger, S. & Sagasti, A. Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol. 9, e1000621 (2011).

    Article  CAS  Google Scholar 

  33. Guzman, J.N. et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700 (2010).

    Article  CAS  Google Scholar 

  34. Roma, L.P. et al. Dynamic measurements of mitochondrial hydrogen peroxide concentration and glutathione redox state in rat pancreatic β-cells using ratiometric fluorescent proteins: confounding effects of pH with HyPer but not roGFP1. Biochem. J. 441, 971–978 (2012).

    Article  CAS  Google Scholar 

  35. Meyer, A.J. & Dick, T.P. Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13, 621–650 (2010).

    Article  CAS  Google Scholar 

  36. Schwarzländer, M. et al. Pulsing of membrane potential in individual mitochondria: a stress-induced mechanism to regulate respiratory bioenergetics in Arabidopsis. Plant Cell 24, 1188–1201 (2012).

    Article  Google Scholar 

  37. Santo-Domingo, J., Giacomello, M., Poburko, D., Scorrano, L. & Demaurex, N. OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. EMBO J. 32, 1927–1940 (2013).

    Article  CAS  Google Scholar 

  38. Wang, W. et al. Superoxide flashes in single mitochondria. Cell 134, 279–290 (2008).

    Article  CAS  Google Scholar 

  39. Marinkovic, P., Godinho, L. & Misgeld, T. in Imaging in Neuroscience: a Laboratory Manual (eds. Yuste, R. & Konnerth A.) Ch. 22 (Cold Spring Harbor Laboratory Press, 2011).

  40. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  Google Scholar 

  41. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20 (2010).

    Google Scholar 

  42. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  Google Scholar 

  43. Klugmann, M. et al. AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol. Cell. Neurosci. 28, 347–360 (2005).

    Article  CAS  Google Scholar 

  44. Bareyre, F.M. et al. In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc. Natl. Acad. Sci. USA 108, 6282–6287 (2011).

    Article  CAS  Google Scholar 

  45. Romanelli, E. et al. Cellular, subcellular and functional in vivo labeling of the spinal cord using vital dyes. Nat. Protoc. 8, 481–490 (2013).

    Article  CAS  Google Scholar 

  46. Zhang, Y. et al. Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann. Neurol. 71, 687–698 (2012).

    Article  CAS  Google Scholar 

  47. Boscolo, A. et al. Early exposure to general anaesthesia disturbs mitochondrial fission and fusion in the developing rat brain. Anesthesiology 118, 1086–1097 (2013).

    Article  CAS  Google Scholar 

  48. Yang, G., Pan, F., Parkhurst, C.N., Grutzendler, J. & Gan, W.B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc. 5, 201–208 (2010).

    Article  CAS  Google Scholar 

  49. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Heitmann, M. Adrian and K. Wullimann for technical assistance, D. Matzek, M. Budak, N. Budak and L. Marinković for animal husbandry and M. Krumbholz for help with statistical analysis. We thank M. Murphy (University of Cambridge) for the gift of MitoQ. We thank R. Campbell (University of Alberta) for the R-GECO1 plasmid, L. Looger (Howard Hughes Medical Institute Janelia Farm Research Campus) for GCaMP3 and N. Demaurex (University of Geneva Medical School) for mito-SypHer. Work in M.K.'s laboratory is financed through grants from the Deutsche Forschungsgemeinschaft (DFG; Sonderforschungsbereich 870 and Transregio 128), the German Federal Ministry of Research and Education (BMBF, Competence Network Multiple Sclerosis), the European Research Council (ERC) under the European Union's Seventh Framework Program (FP/2007-2013; ERC grant agreement no. 310932), the Hertie Foundation and the 'Verein Therapieforschung für MS-Kranke e.V.' T.M. is supported by the Institute of Advanced Studies (Technische Universität München), the Alexander von Humboldt Foundation, the Center for Integrated Protein Science (Munich, EXC 114), the DFG (SFB 596) and the DZNE (Munich). T.M.'s work on this project was further supported by the BMBF as part of ERA-Net '2-photon imaging'. F.M.B. is supported by the DFG (SFB 870) and an independent group leader award of the BMBF. F.M.B., M.K. and T.M. are supported by SyNergy (EXC 1010), and T.P.D., M.K. and T.M. are supported by the DFG Priority Program 1710. Work in D.K.S.C.'s laboratory is supported by grants from the US National Institutes of Health Ca 049797 and the Edward P. Evans Foundation. T.P.D. is supported by the DFG (SFB 938, SFB 1036) and the BMBF ('LungSys'). M.O.B. is recipient of a doctoral fellowship from the Gertrud Reemtsma Foundation (Max Planck Society) and is supported by the German National Academic Foundation. P.R.W. is supported by a postdoctoral fellowship from the Wings of Life Foundation and received previous support from the Human Frontier Science Program. M.O.B. and P.M. were supported by the Graduate School of Technische Universität München.

Author information

Authors and Affiliations

Authors

Contributions

T.M., M.K., T.P.D. and M.O.B. conceived of the experiments. M.O.B., F.M.J.P., P.R.W., M.K. and T.M. performed imaging experiments and image analysis. F.M.B., L.G., T.P.D., O.G., M.S.B., B.P., R.N., D.K.S.C., F.M.J.P. and M.O.B. generated and characterized transgenic mouse lines. P.M.B. performed virus injections. A.S. generated AAV vectors. P.M. and F.M.J.P. conducted experiments in the ALS model. M.K., T.M., M.S. and M.O.B. interpreted the experiments and wrote the paper.

Corresponding authors

Correspondence to Martin Kerschensteiner or Thomas Misgeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1. (PDF 25758 kb)

Parallel imaging of mitochondrial dynamics and glutathione redox potential.

Mitochondrial movement and glutathione redox potential are shown in the 488-nm channel (top) and as pseudocolor-coded R/RDTT (bottom) in a triangularis sterni explant of a Thy1-mito-Grx1-roGFP2 mouse. A mitochondrial contraction is indicated by the white arrow. (AVI 2613 kb)

Mitochondrial contraction and redox changes.

Changes of mitochondrial morphology (top, 488-nm channel) and glutathione redox potential (bottom, R/R0) during a mitochondrial contraction in a triangularis sterni explant of a Thy1-mito-Grx1-roGFP2 mouse. Long mitochondria have a 'pearl on a string'-like appearance during contractions. (AVI 5395 kb)

Mitochondrial contraction and pH changes.

Changes of mitochondrial morphology (top, 408-nm channel) and pH (bottom, R/R0) during a mitochondrial contraction (arrow) in a triangularis sterni explant of a wild-type mouse injected with rAAV-mito-SypHer. (AVI 3071 kb)

Laser axotomy of a peripheral axon in a Thy1-mito-Grx1-roGFP2 mouse.

Three parallel running axons in a triangularis explant of a Thy1-mito-Grx1-roGFP2 mouse. A laser lesion is induced in the middle axon, followed by spreading mitochondrial shape changes (top, 488-nm channel) and oxidation (bottom, R/R0). The muscle twitches when the lesion is induced. (AVI 6061 kb)

Calcium influx into mitochondria after peripheral laser axotomy.

Induction of a laser lesion in a triangularis sterni explant derived from a Thy1-mitoTagRFP-t mouse injected with rAAV-mito-GCaMP3. The lesion induces spreading mitochondrial shape changes (top, 550-nm channel) and the uptake of calcium into mitochondria (bottom, R/R0). (AVI 3354 kb)

Laser axotomy of a central axon in the spinal cord of a Thy1-mito-Grx1-roGFP2 mouse.

In vivo time-lapse of mitochondrial shape changes (top, 488-nm channel) and oxidation (bottom, R/R0) after laser axotomy in the spinal cord of a Thy1-mito-Grx1-roGFP2 mouse. (AVI 3219 kb)

In vivo time-lapse of axonal calcium influx following laser axotomy in the spinal cord of a Thy1-TN-XXL mouse.

Top channel shows YFP only, bottom R/R0. (AVI 3638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breckwoldt, M., Pfister, F., Bradley, P. et al. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat Med 20, 555–560 (2014). https://doi.org/10.1038/nm.3520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing