Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression

Abstract

Tissue mechanics regulate development and homeostasis and are consistently modified in tumor progression. Nevertheless, the fundamental molecular mechanisms through which altered mechanics regulate tissue behavior and the clinical relevance of these changes remain unclear. We demonstrate that increased matrix stiffness modulates microRNA expression to drive tumor progression through integrin activation of β-catenin and MYC. Specifically, in human and mouse tissue, increased matrix stiffness induced miR-18a to reduce levels of the tumor suppressor phosphatase and tensin homolog (PTEN), both directly and indirectly by decreasing levels of homeobox A9 (HOXA9). Clinically, extracellular matrix stiffness correlated directly and significantly with miR-18a expression in human breast tumor biopsies. miR-18a expression was highest in basal-like breast cancers in which PTEN and HOXA9 levels were lowest, and high miR-18a expression predicted poor prognosis in patients with luminal breast cancers. Our findings identify a mechanically regulated microRNA circuit that can promote malignancy and suggest potential prognostic roles for HOXA9 and miR-18a levels in stratifying patients with luminal breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ECM stiffness modulates miRNA expression in culture and in vivo.
Figure 2: ECM stiffness promotes malignancy by inducing miR-18a to reduce PTEN and enhance PI3K activity.
Figure 3: ECM stiffness promotes malignancy by inducing miR-18a to reduce HOXA9 expression.
Figure 4: ECM stiffness promotes malignancy by preventing HOXA9-dependent PTEN transcription.
Figure 5: Tissue stiffness engages mechanotransduction signaling pathways to promote miR-18a–dependent malignancy.
Figure 6: Breast malignancy associates with increased miR-18a and reduced PTEN expression.

Similar content being viewed by others

References

  1. Kumar, S. & Weaver, V.M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Paszek, M.J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Levental, K.R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Provenzano, P.P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tavazoie, S.F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, B., Pan, X., Cobb, G.P. & Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol. 302, 1–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Valastyan, S. & Weinberg, R.A. Roles for microRNAs in the regulation of cell adhesion molecules. J. Cell Sci. 124, 999–1006 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taylor, M.A., Sossey-Alaoui, K., Thompson, C.L., Danielpour, D. & Schiemann, W.P. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J. Clin. Invest. 123, 150–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Neth, P., Nazari-Jahantigh, M., Schober, A. & Weber, C. MicroRNAs in flow-dependent vascular remodelling. Cardiovasc. Res. 99, 294–303 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Yehya, N., Yerrapureddy, A., Tobias, J. & Margulies, S.S. MicroRNA modulate alveolar epithelial response to cyclic stretch. BMC Genomics 13, 154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krasilnikov, M.A. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc.) 65, 59–67 (2000).

    CAS  Google Scholar 

  12. Hollander, M.C., Blumenthal, G.M. & Dennis, P.A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 11, 289–301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salmena, L., Carracedo, A. & Pandolfi, P.P. Tenets of PTEN tumor suppression. Cell 133, 403–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Olive, V., Li, Q. & He, L. mir-17–92: a polycistronic oncomir with pleiotropic functions. Immunol. Rev. 253, 158–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y. et al. The miR-17–92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood 119, 4486–4498 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Suárez, Y. et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc. Natl. Acad. Sci. USA 105, 14082–14087 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kenny, P.A. et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1, 84–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scherr, M. et al. Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Res. 35, e149 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. John, B. et al. Human MicroRNA targets. PLoS Biol. 2, e363 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Betel, D., Wilson, M., Gabow, A., Marks, D.S. & Sander, C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 36, D149–D153 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Enright, A.J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jin, Y., Chen, Z., Liu, X. & Zhou, X. Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol. Biol. 936, 117–127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gilbert, P.M. et al. HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype. J. Clin. Invest. 120, 1535–1550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moens, C.B. & Selleri, L. Hox cofactors in vertebrate development. Dev. Biol. 291, 193–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Tang, Y. & Eng, C. PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner. Cancer Res. 66, 736–742 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Dvinge, H. et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497, 378–382 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 38, 1060–1065 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science (New York, N.Y.) 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  30. Buffa, F.M. et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res. 71, 5635–5645 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  32. Delmas, P. & Coste, B. Mechano-gated ion channels in sensory systems. Cell 155, 278–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Z. miRNA in the regulation of ion channel/transporter expression. Compr. Physiol. 3, 599–653 (2013).

    PubMed  Google Scholar 

  34. Provenzano, P.P., Inman, D.R., Eliceiri, K.W. & Keely, P.J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28, 4326–4343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, S. & Ingber, D.E. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8, 175–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Fasching, P.A. et al. Influence of mammographic density on the diagnostic accuracy of tumor size assessment and association with breast cancer tumor characteristics. Eur. J. Radiol. 60, 398–404 (2006).

    Article  PubMed  Google Scholar 

  38. Chang, J.M. et al. Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. Eur. Radiol. 23, 2450–2458 (2013).

    Article  PubMed  Google Scholar 

  39. Evans, A. et al. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res. 12, R104 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang, J.M. et al. Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Res. Treat. 129, 89–97 (2011).

    Article  PubMed  Google Scholar 

  41. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Parker, J.S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, F. et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl. Acad. Sci. USA 95, 14821–14826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weaver, V.M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lakins, J.N., Chin, A.R. & Weaver, V.M. Exploring the link between human embryonic stem cell organization and fate using tension-calibrated extracellular matrix functionalized polyacrylamide gels. Methods Mol. Biol. 916, 317–350 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paszek, M.J. et al. Scanning angle interference microscopy reveals cell dynamics at the nanoscale. Nat. Methods 9, 825–827 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gan, L., Schwengberg, S. & Denecke, B. MicroRNA profiling during cardiomyocyte-specific differentiation of murine embryonic stem cells based on two different miRNA array platforms. PLoS ONE 6, e25809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mullokandov, G. et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat. Methods 9, 840–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lopez, J.I., Mouw, J.K. & Weaver, V.M. Biomechanical regulation of cell orientation and fate. Oncogene 27, 6981–6993 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson, K.R., Leight, J.L. & Weaver, V.M. Demystifying the effects of a three-dimensional microenvironment in tissue morphogenesis. Methods Cell Biol. 83, 547–583 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goldhirsch, A. et al. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 22, 1736–1747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Von Minckwitz, G. et al. Response-guided neoadjuvant chemotherapy for breast cancer. J. Clin. Oncol. 31, 3623–3630 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Weaver and N. Boudreau labs for helpful discussions. Atomic force microscopy analysis of the PyMT samples was performed by H. Yu. Animal handling was supported by L. Korets. miRNA and antagomir constructs were provided by M. Scherr at the Medical School Hannover. PTEN proximal promoter constructs were provided by C. Eng at the Genomic Medical Institute. LOX inhibitory antibodies were provided by A. Giaccia at the Stanford University School of Medicine. HOXA9 was provided by T. Nakamura at the Japanese Foundation for Cancer Research. This work was supported by US Department of Defense Breast Cancer Research Program (DOD BCRP) grant W81XWH-07-1-0538 (J.K.M.), Susan G. Komen Postdoctoral Fellowship PDF12230246 (I.A.), US National Science Foundation Graduate Research Fellowship (G.O.), DOD BCRP grants W81XWH-05-1-0330 and W81XWH-13-1-0216 (V.M.W.), US National Institutes of Health NCI grants R01 CA138818, U54 CA143836, R01 CA085492 and U01 ES019458 (V.M.W.) and Susan G. Komen grant KG110560PP (V.M.W. and E.S.W.).

Author information

Authors and Affiliations

Authors

Contributions

J.K.M., Y.Y. and L.D. conducted PyMT and V737N mouse experiments. J.K.M., A.C.W. and K.R.L. fabricated and conducted experiments with the PA hydrogels. R.O.B. and J.K.M. performed the miRNA and large-scale gene expression analyses. J.N.L. designed and constructed expression constructs and the V737N transgenic mouse. J.K.M. and Y.Y. performed immunofluorescence imaging, and G.O. performed the ImageJ analyses. I.A. performed AFM measurements. E.S.H. collected the human patient samples and aided in the interpretation of the data. Y.-Y.C. aided with pathological breast cancer subtyping. P.M.G. conducted the HOXA9 microarray analysis25. V.M.W. and J.K.M. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Valerie M Weaver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4 and Supplementary Figures 1–6 (PDF 1526 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouw, J., Yui, Y., Damiano, L. et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat Med 20, 360–367 (2014). https://doi.org/10.1038/nm.3497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3497

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer