Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kindlin-1 controls Wnt and TGF-β availability to regulate cutaneous stem cell proliferation

Abstract

Kindlin-1 is an integrin tail binding protein that controls integrin activation. Mutations in the FERMT-1 gene, which encodes for Kindlin-1, lead to Kindler syndrome in man, which is characterized by skin blistering, premature skin aging and skin cancer of unknown etiology. Here we show that loss of Kindlin-1 in mouse keratinocytes recapitulates Kindler syndrome and also produces enlarged and hyperactive stem cell compartments, which lead to hyperthickened epidermis, ectopic hair follicle development and increased skin tumor susceptibility. Mechanistically, Kindlin-1 controls keratinocyte adhesion through β1-class integrins and proliferation and differentiation of cutaneous epithelial stem cells by promoting αvβ6 integrin–mediated transforming growth factor-β (TGF-β) activation and inhibiting Wnt–β-catenin signaling through integrin-independent regulation of Wnt ligand expression. Our findings assign Kindlin-1 the previously unknown and essential task of controlling cutaneous epithelial stem cell homeostasis by balancing TGF-β–mediated growth-inhibitory signals and Wnt–β-catenin–mediated growth-promoting signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kindlin-1 controls HF growth.
Figure 2: Premature anagen induction and ectopic HF development in skin from Kind1-K5 mice.
Figure 3: Kindlin-1 regulates cutaneous epithelial SC homeostasis.
Figure 4: Kindlin-1 promotes αvβ6 integrin–induced TGF-β release in vitro and in vivo.
Figure 5: Kindlin-1 controls Wnt–β-catenin signaling.
Figure 6: Loss of Kindlin-1 increases skin tumor incidence.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Meves, A., Stremmel, C., Gottschalk, K. & Fässler, R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol. 19, 504–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Lai-Cheong, J.E. et al. Kindler syndrome: a focal adhesion genodermatosis. Br. J. Dermatol. 160, 233–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Ussar, S. et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 4, e1000289 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fässler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Dowling, J.J., Vreede, A.P., Kim, S., Golden, J. & Feldman, E.L. Kindlin-2 is required for myocyte elongation and is essential for myogenesis. BMC Cell Biol. 9, 36 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lai-Cheong, J.E., Ussar, S., Arita, K., Hart, I.R. & McGrath, J.A. Colocalization of kindlin-1, kindlin-2, and migfilin at keratinocyte focal adhesion and relevance to the pathophysiology of Kindler syndrome. J. Invest. Dermatol. 128, 2156–2165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He, Y., Esser, P., Heinemann, A., Bruckner-Tuderman, L. & Has, C. Kindlin-1 and -2 have overlapping functions in epithelial cells implications for phenotype modification. Am. J. Pathol. 178, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watt, F.M. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 21, 3919–3926 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Watt, F.M. & Jensen, K.B. Epidermal stem cell diversity and quiescence. EMBO Mol. Med. 1, 260–267 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woo, W.M. & Oro, A.E. SnapShot: hair follicle stem cells. Cell 146, 334–334 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arwert, E.N., Hoste, E. & Watt, F.M. Epithelial stem cells, wound healing and cancer. Nat. Rev. Cancer 12, 170–180 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Alonso, L. & Fuchs, E. Stem cells in the skin: waste not, Wnt not. Genes Dev. 17, 1189–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Watt, F.M. & Fujiwara, H. Cell–extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol. 3, a005124 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Janes, S.M. & Watt, F.M. New roles for integrins in squamous-cell carcinoma. Nat. Rev. Cancer 6, 175–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Evans, R.D. et al. A tumor-associated β1 integrin mutation that abrogates epithelial differentiation control. J. Cell Biol. 160, 589–596 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferreira, M., Fujiwara, H., Morita, K. & Watt, F.M. An activating β1 integrin mutation increases the conversion of benign to malignant skin tumors. Cancer Res. 69, 1334–1342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. White, D.E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6, 159–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, Y. et al. Kindlin 2 forms a transcriptional complex with β-catenin and TCF4 to enhance Wnt signalling. EMBO Rep. 13, 750–758 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arita, K. et al. Unusual molecular findings in Kindler syndrome. Br. J. Dermatol. 157, 1252–1256 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Emanuel, P.O., Rudikoff, D. & Phelps, R.G. Aggressive squamous cell carcinoma in Kindler syndrome. Skinmed 5, 305–307 (2006).

    Article  PubMed  Google Scholar 

  23. Lai-Cheong, J.E. et al. Loss-of-function FERMT1 mutations in kindler syndrome implicate a role for fermitin family homolog-1 in integrin activation. Am. J. Pathol. 175, 1431–1441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Has, C. et al. Kindlin-1 is required for RhoGTPase-mediated lamellipodia formation in keratinocytes. Am. J. Pathol. 175, 1442–1452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brakebusch, C. et al. Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. EMBO J. 19, 3990–4003 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Böttcher, R.T. et al. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat. Cell Biol. 14, 584–592 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Braun, K.M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241–5255 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Fujiwara, H. et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144, 577–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alonso, L. & Fuchs, E. Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. USA 100 (suppl. 1), 11830–11835 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jensen, K.B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4, 427–439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Munger, J.S. et al. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Xie, Y., McElwee, K.J., Owen, G.R., Häkkinen, L. & Larjava, H.S. Integrin β6-deficient mice show enhanced keratinocyte proliferation and retarded hair follicle regression after depilation. J. Invest. Dermatol. 132, 547–555 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Li, L. & Bhatia, R. Stem cell quiescence. Clin. Cancer Res. 17, 4936–4941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Annes, J.P., Chen, Y., Munger, J.S. & Rifkin, D.B. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J. Cell Biol. 165, 723–734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobielak, K., Stokes, N., de la Cruz, J., Polak, L. & Fuchs, E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc. Natl. Acad. Sci. USA 104, 10063–10068 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, J. et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells 24, 2826–2839 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95, 605–614 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Lo Celso, C., Prowse, D.M. & Watt, F.M. Transient activation of β-catenin signaling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 13, 1787–1799 (2004).

    Article  CAS  Google Scholar 

  39. Lowry, W.E. et al. Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 19, 1596–1611 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Silva-Vargas, V. et al. β-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell 9, 121–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, P., Byrne, C., Jacobs, J. & Fuchs, E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev. 9, 700–713 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Estrach, S. et al. Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 133, 4427–4438 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999).

    CAS  PubMed  Google Scholar 

  44. Bernard, P., Fleming, A., Lacombe, A., Harley, V.R. & Vilain, E. Wnt4 inhibits β-catenin/TCF signalling by redirecting β-catenin to the cell membrane. Biol. Cell 100, 167–177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mikels, A.J. & Nusse, R. Purified Wnt5a protein activates or inhibits β-catenin–TCF signaling depending on receptor context. PLoS Biol. 4, e115 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chen, B. et al. Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, S.M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Devgan, V., Mammucari, C., Millar, S.E., Brisken, C. & Dotto, G.P. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 19, 1485–1495 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guasch, G. et al. Loss of TGFβ signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell 12, 313–327 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beronja, S. et al. RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 501, 185–190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bandyopadhyay, A., Rothschild, G., Kim, S., Calderwood, D.A. & Raghavan, S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. J. Cell Sci. 125, 2172–2184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ussar, S., Wang, H.V., Linder, S., Fässler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res. 312, 3142–3151 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Oshimori, N. & Fuchs, E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10, 63–75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Annes, J.P. et al. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Sin, S. et al. Role of the focal adhesion protein kindlin-1 in breast cancer growth and lung metastasis. J. Natl. Cancer Inst. 103, 1323–1337 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Chaudhury, A. & Howe, P.H. The tale of transforming growth factor-β (TGFβ) signaling: a soigné enigma. IUBMB Life 61, 929–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fässler, R. & Meyer, M. Consequences of lack of β1 integrin gene expression in mice. Genes Dev. 9, 1896–1908 (1995).

    Article  PubMed  Google Scholar 

  58. Ramirez, A. et al. A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis 39, 52–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Abel, E.L., Angel, J.M., Kiguchi, K. & DiGiovanni, J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat. Protoc. 4, 1350–1362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kasper, M. et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc. Natl. Acad. Sci. USA 108, 4099–4104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sundberg, J.P., Sundberg, B.A. & Beamer, W.G. Comparison of chemical carcinogen skin tumor induction efficacy in inbred, mutant, and hybrid strains of mice: morphologic variations of induced tumors and absence of a papillomavirus cocarcinogen. Mol. Carcinog. 20, 19–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Jensen, K.B., Driskell, R.R. & Watt, F.M. Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nat. Protoc. 5, 898–911 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Lorenz, K. et al. Integrin-linked kinase is required for epidermal and hair follicle morphogenesis. J. Cell Biol. 177, 501–513 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kunder, C.A. et al. Mast cell–derived particles deliver peripheral signals to remote lymph nodes. J. Exp. Med. 206, 2455–2467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Montanez, E. et al. Analysis of integrin functions in peri-implantation embryos, hematopoietic system, and skin. Methods Enzymol. 426, 239–289 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Mátés, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    Article  PubMed  CAS  Google Scholar 

  67. Brown, J.K. et al. Integrin-αvβ6, a putative receptor for foot-and-mouth disease virus, is constitutively expressed in ruminant airways. J. Histochem. Cytochem. 54, 807–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Müller-Röver, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3–15 (2001).

    Article  PubMed  Google Scholar 

  69. Paus, R. et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol. 113, 523–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Shi, Q. & Boettiger, D. A novel mode for integrin-mediated signaling: tethering is required for phosphorylation of FAK Y397. Mol. Biol. Cell 14, 4306–4315 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blümmel, J. et al. Protein repellent properties of covalently attached PEG coatings on nanostructured SiO2-based interfaces. Biomaterials 28, 4739–4747 (2007).

    Article  PubMed  CAS  Google Scholar 

  72. Morales-Avila, E. et al. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor αvβ3 expression. Bioconjug. Chem. 22, 913–922 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Polleux for generating gold nanoarrays, S. Bach for expert technical assistance, C. Mein (Barts and the London Genome Centre) for generating the human microarray data and R. Zent and R. Paus for carefully reading the manuscript. We thank M. Aumailley (University of Cologne), R. Grosschedl (Max Planck Institute (MPI) Immunobiology), S. Violette (Biogen Idec), D. Sheppard (University of California, San Francisco) and M. Wegner (University of Erlangen) for providing antibodies and I. Thesleff (University of Helsinki), R. Kageyama (Kyoto University), A. Kispert (University of Hannover) and J. Behrens (University of Erlangen) for sending essential constructs. This work was funded by the US National Institutes of Health (CA034282) to D.B.R., the Wellcome Trust (PhD studentship to J.E.L.-C.) and the UK National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St. Thomas' National Health Service Foundation Trust and King's College London to J.A.M., the Advanced European Research Council (ERC) Grant (ERC Grant Agreement 322652) and the Max Planck Society to R.F.

Author information

Authors and Affiliations

Authors

Contributions

R.F. initiated the project. R.F. and E.R. designed the experiments and wrote the paper. E.R., D.K., M.W., M.J., R.R., S.U., R.T.B. and J.E.L.-C. performed experiments. E.R., M.W., M.J. and R.F. analyzed data. D.B.R. and J.A.M. provided important reagents and/or analytical tools. All authors read and approved the manuscript.

Corresponding author

Correspondence to Reinhard Fässler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1, 3 and 4. (PDF 23014 kb)

Supplementary Table 2

Microarray data with significant gene expression changes of 2 fold. First sheet shows all genes sorted by the difference score. In the following sheets genes are divided in the indicated categories (Wnt signaling; Inflammation and Wound healing; Proliferation and Cell cycle; Metabolism). N, NHS skin; K, KS skin; AVG, average; DiffScor, difference score. (XLSX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rognoni, E., Widmaier, M., Jakobson, M. et al. Kindlin-1 controls Wnt and TGF-β availability to regulate cutaneous stem cell proliferation. Nat Med 20, 350–359 (2014). https://doi.org/10.1038/nm.3490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing