Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux

Abstract

Although the classical antibiotic spectinomycin is a potent bacterial protein synthesis inhibitor, poor antimycobacterial activity limits its clinical application for treating tuberculosis. Using structure-based design, we generated a new semisynthetic series of spectinomycin analogs with selective ribosomal inhibition and excellent narrow-spectrum antitubercular activity. In multiple murine infection models, these spectinamides were well tolerated, significantly reduced lung mycobacterial burden and increased survival. In vitro studies demonstrated a lack of cross resistance with existing tuberculosis therapeutics, activity against multidrug-resistant (MDR) and extensively drug-resistant tuberculosis and an excellent pharmacological profile. Key to their potent antitubercular properties was their structural modification to evade the Rv1258c efflux pump, which is upregulated in MDR strains and is implicated in macrophage-induced drug tolerance. The antitubercular efficacy of spectinamides demonstrates that synthetic modifications to classical antibiotics can overcome the challenge of intrinsic efflux pump-mediated resistance and expands opportunities for target-based tuberculosis drug discovery.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spectinomycin and spectinamide ribosome binding.
Figure 2: In vivo efficacy trial data showing bacterial burden (log10 CFU) in the lungs of M. tuberculosis–infected mice. (a) Bacterial burden in the lungs of interferon-γ (IFN-γ) receptor knockout mice acutely infected with M. tuberculosis (n = 5) treated with lead spectinamides and comparator drugs all subcutaneously dosed at 200 mg per kg body weight twice daily (BID) for 9 d (mean ± s.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Zumla, A., Raviglione, M., Hafner, R. & von Reyn, C.F. Tuberculosis. N. Engl. J. Med. 368, 745–755 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Global Tuberculosis Report, WHO 2012. (WHO, Geneva, Switzerland, 2012).

  3. 3

    Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24, 71–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Newman, D.J. & Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Borovinskaya, M.A., Shoji, S., Holton, J.M., Fredrick, K. & Cate, J.H. A steric block in translation caused by the antibiotic spectinomycin. ACS Chem. Biol. 2, 545–552 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Novak, E., Schlagel, C.A., LeZotte, L.A. & Pfeifer, R.T. The tolerance of high dose intravenous spectinomycin therapy in man. J. Clin. Pharmacol. 14, 442–447 (1974).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Akiyoshi, M., Yano, S. & Ikeda, T. [Ototoxicity of spectinomycin (author's transl)]. Jpn. J. Antibiot. 29, 771–782 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Thomas, R.C. & Fritzen, E.L. Spectinomycin modification. III. Spectinomycin analogs with C-3′-branched chain sugars. J. Antibiot. (Tokyo) 38, 208–219 (1985).

    Article  CAS  Google Scholar 

  10. 10

    Woitun, E., Maier, R., Wetzel, B., Reuter, W. & Lechner, U. Modification of spectinomycin. 2. Derivatives of 4-dihydro-4-deoxy-4(R)-aminospectinomycin. J. Antibiot. (Tokyo) 34, 22–27 (1981).

    Article  CAS  Google Scholar 

  11. 11

    Maier, R., Woitun, E., Reuter, A., Reuter, W. & Wetzel, B. Modification of spectinomycin. 1. Synthesis of 4-aminospectinomycins. J. Antibiot. (Tokyo) 34, 16–21 (1981).

    Article  CAS  Google Scholar 

  12. 12

    Zurenko, G.E., Yagi, B.H., Vavra, J.J. & Wentworth, B.B. In vitro antibacterial activity of trospectomycin (U-63366F), a novel spectinomycin analog. Antimicrob. Agents Chemother. 32, 216–223 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Noskin, G.A. Tigecycline: a new glycylcycline for treatment of serious infections. Clin. Infect. Dis. 41 (suppl. 5), S303–S314 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Projan, S.J. Preclinical pharmacology of GAR-936, a novel glycylcycline antibacterial agent. Pharmacotherapy 20, 219S–223S (2000).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Wiley, P.F., Argoudelis, A.D. & Hoesema, H. The chemistry of actinospectacin. IV. The determination of the structure of actinospectacin. J. Am. Chem. Soc. 85, 2652–2659 (1963).

    Article  Google Scholar 

  16. 16

    Foley, L., Lin, J.T. & Weigele, M. Spectinomycin chemistry. II.) 9-Deoxy-4(R)-dihydrospectinomycin and 9-deoxyspectinomycin. J. Antibiot. (Tokyo) 31, 979–984 (1978).

    Article  CAS  Google Scholar 

  17. 17

    Foley, L., Lin, J.T. & Weigele, M. Preparation of 7-deoxyspectinomycin and 7-deoxy-8-epi-4(R)-dihydrospectinomycin. J. Antibiot. (Tokyo) 32, 418–419 (1979).

    Article  CAS  Google Scholar 

  18. 18

    Rosenbrook, W. Jr. & Carney, R.E. Spectinomycin modification. I 7-EPI-9-deoxy-4(R)-dihydrospectinomycin. J. Antibiot. (Tokyo) 28, 953–959 (1975).

    Article  CAS  Google Scholar 

  19. 19

    Balganesh, M. et al. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob. Agents Chemother. 56, 2643–2651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Friesner, R.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  CAS  Google Scholar 

  21. 21

    Wilcken, R., Zimmermann, M.O., Lange, A., Joerger, A.C. & Boeckler, F.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 56, 1363–1388 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Galimand, M., Gerbaud, G. & Courvalin, P. Spectinomycin resistance in Neisseria spp. due to mutations in 16S rRNA. Antimicrob. Agents Chemother. 44, 1365–1366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Zaunbrecher, M.A., Sikes, R.D. Jr., Metchock, B., Shinnick, T.M. & Posey, J.E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 106, 20004–20009 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Honaker, R.W., Dhiman, R.K., Narayanasamy, P., Crick, D.C. & Voskuil, M.I. DosS responds to a reduced electron transport system to induce the Mycobacterium tuberculosis DosR regulon. J. Bacteriol. 192, 6447–6455 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Ramón-García, S. et al. Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG. Antimicrob. Agents Chemother. 56, 2074–2083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Böttger, E.C., Springer, B., Prammananan, T., Kidan, Y. & Sander, P. Structural basis for selectivity and toxicity of ribosomal antibiotics. EMBO Rep. 2, 318–323 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Hobbie, S.N. et al. Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc. Natl. Acad. Sci. USA 105, 20888–20893 (2008).

    Article  PubMed  Google Scholar 

  28. 28

    Hobbie, S.N. et al. Mitochondrial deafness alleles confer misreading of the genetic code. Proc. Natl. Acad. Sci. USA 105, 3244–3249 (2008).

    Article  PubMed  Google Scholar 

  29. 29

    Barnhill, A.E., Brewer, M.T. & Carlson, S.A. Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components. Antimicrob. Agents Chemother. 56, 4046–4051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    McKee, E.E., Ferguson, M., Bentley, A.T. & Marks, T.A. Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob. Agents Chemother. 50, 2042–2049 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Hobbie, S.N. et al. Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria. Nucleic Acids Res. 35, 6086–6093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Shcherbakov, D. et al. Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in-vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Mol. Microbiol. 77, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Drusano, G.L. Antimicrobial pharmacodynamics: critical interactions of 'bug and drug'. Nat. Rev. Microbiol. 2, 289–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Lenaerts, A.J., Gruppo, V., Brooks, J.V. & Orme, I.M. Rapid in vivo screening of experimental drugs for tuberculosis using γ-interferon gene–disrupted mice. Antimicrob. Agents Chemother. 47, 783–785 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Lenaerts, A.J. et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob. Agents Chemother. 49, 2294–2301 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Bissantz, C., Kuhn, B. & Stahl, M. A medicinal chemist's guide to molecular interactions. J. Med. Chem. 53, 5061–5084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Kuhn, B., Mohr, P. & Stahl, M. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem. 53, 2601–2611 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Adams, K.N. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145, 39–53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Lee, R.E., Brennan, P.J. & Besra, G.S. Mycobacterium tuberculosis cell envelope. Curr. Top. Microbiol. Immunol. 215, 1–27 (1996).

    CAS  PubMed  Google Scholar 

  40. 40

    Akbergenov, R. et al. Molecular basis for the selectivity of antituberculosis compounds capreomycin and viomycin. Antimicrob. Agents Chemother. 55, 4712–4717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Dartois, V. & Barry, C.E. III. A medicinal chemists' guide to the unique difficulties of lead optimization for tuberculosis. Bioorg. Med. Chem. Lett. 23, 4741–4750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Louw, G.E. et al. Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am. J. Respir. Crit. Care Med. 184, 269–276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Siddiqi, N. et al. Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a tap-like efflux pump. Infection 32, 109–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Madhura, D.B., Lee, R. & Meibohm, B. Pharmacokinetic profile of spectinomycin in rats. Pharmazie 68, 675–676 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Case, D.A. et al. AMBER 11. (University of California, San Francisco, 2010).

  46. 46

    Clinical Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard M7–A7 (Clinical Laboratory Standards Institute, Wayne, PA, 2006).

  47. 47

    Hurdle, J.G. et al. A microbiological assessment of novel nitrofuranylamides as antituberculosis agents. J. Antimicrob. Chemother. 62, 1037–1045 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Mallari, J.P. et al. Development of potent purine-derived nitrile inhibitors of the trypanosomal protease TbcatB. J. Med. Chem. 51, 545–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Springer, B., Lucke, K., Calligaris-Maibach, R., Ritter, C. & Bottger, E.C. Quantitative drug susceptibility testing of Mycobacterium tuberculosis by use of MGIT 960 and EpiCenter instrumentation. J. Clin. Microbiol. 47, 1773–1780 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Bruell, C.M. et al. Conservation of bacterial protein synthesis machinery: initiation and elongation in Mycobacterium smegmatis. Biochemistry 47, 8828–8839 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Pallotti, F. & Lenaz, G. Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol. 65, 1–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    McKee, E.E., Grier, B.L., Thompson, G.S. & McCourt, J.D. Isolation and incubation conditions to study heart mitochondrial protein synthesis. Am. J. Physiol. 258, E492–E502 (1990).

    CAS  PubMed  Google Scholar 

  53. 53

    Fernández-Silva, P., Acin-Perez, R., Fernandez-Vizarra, E., Perez-Martos, A. & Enriquez, J.A. In vivo and in organello analyses of mitochondrial translation. Methods Cell Biol. 80, 571–588 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Hornig-Do, H.T. et al. Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly. EMBO J. 31, 1293–1307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Budha, N.R. et al. Pharmacokinetically-guided lead optimization of nitrofuranylamide antituberculosis agents. AAPS J. 10, 157–165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Budha, N.R., Lee, R.B., Hurdle, J.G., Lee, R.E. & Meibohm, B. A simple in vitro PK/PD model system to determine time-kill curves of drugs against Mycobacteria. Tuberculosis (Edinb.) 89, 378–385 (2009).

    Article  CAS  Google Scholar 

  57. 57

    Lenaerts, A.J., Degroote, M.A. & Orme, I.M. Preclinical testing of new drugs for tuberculosis: current challenges. Trends Microbiol. 16, 48–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    De Groote, M.A. et al. Comparative studies evaluating mouse models used for efficacy testing of experimental drugs against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 55, 1237–1247 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    De Groote, M.A. et al. Importance of confirming data on the in vivo efficacy of novel antibacterial drug regimens against various strains of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 731–738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Gonzalez-Juarrero, M., Woolhiser, L.K., Brooks, E., DeGroote, M.A. & Lenaerts, A.J. Mouse model for efficacy testing of antituberculosis agents via intrapulmonary delivery. Antimicrob. Agents Chemother. 56, 3957–3959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Ordway, D. et al. XCL1 (lymphotactin) chemokine produced by activated CD8 T cells during the chronic stage of infection with Mycobacterium tuberculosis negatively affects production of IFN-γ by CD4 T cells and participates in granuloma stability. J. Leukoc. Biol. 82, 1221–1229 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Rosas-Taraco, A.G. et al. Intrapulmonary delivery of XCL1-targeting small interfering RNA in mice chronically infected with Mycobacterium tuberculosis. Am. J. Respir. Cell Mol. Biol. 41, 136–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Rosas-Taraco, A.G. et al. Local pulmonary immunotherapy with siRNA targeting TGFβ1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis (Edinb.) 91, 98–106 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by US National Institutes of Health (NIH) grant AI090810 (R.E.L., E.C.B., A.J.L. and B.M.), the National Institute of Allergy and Infectious Diseases (NIAID) Indefinite Delivery Indefinite Quantity (IDIQ) (R.E.L. and M.G.) Contract Task Order HHSN272201000009I/01, the American Lebanese Syrian Associated Charities (ALSAC) and St. Jude Children's Research Hospital (SJCRH) (R.E.L.) and in part by the Intramural Research Program of the NIAID, NIH (H.I.B.) and the Spanish Government (grant BIO-2009-09405) (J.A.A.). We thank L. Yang and J. Scarborough from SJCRH for their help with analysis of the final compounds, M. Maddox from SJCRH for technical assistance in determining MIC values, J. Ryman from the University of Tennessee Health Science Center for technical assistance in the performance of pharmacokinetic studies in mice, M. Butler from Microbiotix for coordination of the MDR tuberculosis testing and E. Tuomanen from SJCRH for critical evaluation of this manuscript.

Author information

Affiliations

Authors

Contributions

R.E.L. designed the compound series. J.G.H., D.F.B., R.B.L. and H.I.B. performed MIC testing and microbiology studies. J.L., J.Q., R., S.L.W. and D.S. performed the medicinal chemistry. T.M., R.A. and E.C.B. designed and performed MIC testing and ribosome inhibition studies. M.S.S., M.R.M., M.G.-J. and A.J.L. designed and performed the in vivo efficacy trials. P.K.V., C.R., D.B.M., A.T. and B.M. designed and performed the pharmacokinetic analysis. Z.Z. and S.D. performed the molecular modeling experiments. C.V., D.F.B. and J.A.A. designed and performed the efflux mutant testing. All authors discussed and analyzed the data. R.E.L., E.C.B., A.J.L., R.B.L., D.F.B., J.A.A. and B.M. wrote the manuscript.

Corresponding author

Correspondence to Richard E Lee.

Ethics declarations

Competing interests

R.E.L., J.Q., J.G.H., B.M., P.K.V., R. and J.L. disclose intellectual property rights ownership associated with the spectinamide series.

Supplementary information

Supplementary Text and Figures

Supplementary Scheme 1, Supplementary Analytical Data, Supplementary Tables 1–12 and Supplementary Figures 1–3 (PDF 1822 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, R., Hurdle, J., Liu, J. et al. Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 20, 152–158 (2014). https://doi.org/10.1038/nm.3458

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing