Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fas ligand–mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas


This article has been updated


Loss of function of the tumor suppressor gene PRDM1 (also known as BLIMP1) or deregulated expression of the oncogene BCL6 occurs in a large proportion of diffuse large B cell lymphoma (DLBCL) cases. However, targeted mutation of either gene in mice leads to only slow and infrequent development of malignant lymphoma, and despite frequent mutation of BCL6 in activated B cells of healthy individuals, lymphoma development is rare. Here we show that T cells prevent the development of overt lymphoma in mice caused by Blimp1 deficiency or overexpression of Bcl6 in the B cell lineage. Impairment of T cell control results in rapid development of DLBCL-like disease, which can be eradicated by polyclonal CD8+ T cells in a T cell receptor–, CD28- and Fas ligand–dependent manner. Thus, malignant transformation of mature B cells requires mutations that impair intrinsic differentiation processes and permit escape from T cell–mediated tumor surveillance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Expansion of a pre-plasmablast population in the absence of Blimp1.
Figure 2: Accelerated lymphoma development in Blimp1-mutant T cell–deficient mice.
Figure 3: Molecular profiles of B cell lymphomas.
Figure 4: Bcl6 overexpression in the absence of T cells drives rapid B cell lymphoma development.
Figure 5: Polyclonal CD8+ T cells can eradicate B lymphoma cells in a TCR- and CD28-dependent manner.
Figure 6: CD8+ T cells eradicate B lymphoma cells by activating the FasL-Fas apoptotic pathway.

Change history

  • 30 May 2014

    In the version of this article initially published, the percentages in the top row of Figure 1c were incorrect. The errors have been corrected in the HTML and PDF versions of the article.


  1. 1

    Schneider, C., Pasqualucci, L. & Dalla-Favera, R. Molecular pathogenesis of diffuse large B-cell lymphoma. Semin. Diagn. Pathol. 28, 167–177 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Nogai, H., Dorken, B. & Lenz, G. Pathogenesis of non-Hodgkin's lymphoma. J. Clin. Oncol. 29, 1803–1811 (2011).

    CAS  PubMed  Google Scholar 

  3. 3

    Rosenwald, A. et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J. Exp. Med. 198, 851–862 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Frick, M., Dorken, B. & Lenz, G. New insights into the biology of molecular subtypes of diffuse large B-cell lymphoma and Burkitt lymphoma. Best Pract. Res. Clin. Haematol. 25, 3–12 (2012).

    CAS  PubMed  Google Scholar 

  5. 5

    Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    CAS  PubMed  Google Scholar 

  6. 6

    Lenz, G. & Staudt, L.M. Aggressive lymphomas. N. Engl. J. Med. 362, 1417–1429 (2010).

    CAS  PubMed  Google Scholar 

  7. 7

    Rui, L., Schmitz, R., Ceribelli, M. & Staudt, L.M. Malignant pirates of the immune system. Nat. Immunol. 12, 933–940 (2011).

    CAS  PubMed  Google Scholar 

  8. 8

    Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    CAS  PubMed  Google Scholar 

  9. 9

    Kallies, A. et al. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity 26, 555–566 (2007).

    CAS  PubMed  Google Scholar 

  10. 10

    Mandelbaum, J. et al. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell–like diffuse large B cell lymphoma. Cancer Cell 18, 568–579 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Calado, D.P. et al. Constitutive canonical NF-κB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell–like diffuse large cell lymphoma. Cancer Cell 18, 580–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    CAS  PubMed  Google Scholar 

  13. 13

    Iqbal, J. et al. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia 21, 2332–2343 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    CAS  PubMed  Google Scholar 

  15. 15

    Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS  PubMed  Google Scholar 

  16. 16

    Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. USA 95, 11816–11821 (1998).

    CAS  PubMed  Google Scholar 

  17. 17

    Shen, H.M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    CAS  PubMed  Google Scholar 

  18. 18

    Yamane, A. et al. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol. 12, 62–69 (2011).

    CAS  PubMed  Google Scholar 

  19. 19

    Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455 (2005).

    CAS  PubMed  Google Scholar 

  20. 20

    Grulich, A.E., van Leeuwen, M.T., Falster, M.O. & Vajdic, C.M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).

    PubMed  Google Scholar 

  21. 21

    Schreiber, R.D., Old, L.J. & Smyth, M.J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  22. 22

    Challa-Malladi, M. et al. Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20, 728–740 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Rimsza, L.M. et al. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: a follow-up study from the Leukemia and Lymphoma Molecular Profiling Project. Blood 103, 4251–4258 (2004).

    CAS  PubMed  Google Scholar 

  24. 24

    Smyth, M.J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Street, S.E. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med. 199, 879–884 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Kallies, A. et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med. 200, 967–977 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Kutok, J.L. & Wang, F. Spectrum of Epstein-Barr virus–associated diseases. Annu. Rev. Pathol. 1, 375–404 (2006).

    CAS  PubMed  Google Scholar 

  28. 28

    Lee, K.S., Groshong, S.D., Cool, C.D., Kleinschmidt-DeMasters, B.K. & van Dyk, L.F. Murine gammaherpesvirus 68 infection of IFNγ unresponsive mice: a small animal model for gammaherpesvirus-associated B-cell lymphoproliferative disease. Cancer Res. 69, 5481–5489 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    D'Costa, K. et al. Blimp1 is limiting for transformation in a mouse plasmacytoma model. Blood 113, 5911–5919 (2009).

    CAS  PubMed  Google Scholar 

  30. 30

    Pasqualucci, L. et al. AID is required for germinal center-derived lymphomagenesis. Nat. Genet. 40, 108–112 (2008).

    CAS  PubMed  Google Scholar 

  31. 31

    Stopeck, A.T. et al. Loss of B7.2 (CD86) and intracellular adhesion molecule 1 (CD54) expression is associated with decreased tumor-infiltrating T lymphocytes in diffuse B-cell large-cell lymphoma. Clin. Cancer Res. 6, 3904–3909 (2000).

    CAS  PubMed  Google Scholar 

  32. 32

    Salek-Ardakani, S. et al. B cell–specific expression of B7–2 is required for follicular TH cell function in response to vaccinia virus. J. Immunol. 186, 5294–5303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Victora, G.D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Man, K. et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165 (2013).

    CAS  PubMed  Google Scholar 

  35. 35

    Kaech, S.M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Burnet, F.M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–27 (1970).

    CAS  PubMed  Google Scholar 

  37. 37

    Willimsky, G. & Blankenstein, T. The adaptive immune response to sporadic cancer. Immunol. Rev. 220, 102–112 (2007).

    CAS  PubMed  Google Scholar 

  38. 38

    Zhang, B. et al. Immune surveillance and therapy of lymphomas driven by Epstein-Barr virus protein LMP1 in a mouse model. Cell 148, 739–751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Pasqualucci, L. et al. Expression of the AID protein in normal and neoplastic B cells. Blood 104, 3318–3325 (2004).

    CAS  PubMed  Google Scholar 

  40. 40

    Kitano, M. et al. Bcl6 protein expression shapes pre–germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972 (2011).

    CAS  PubMed  Google Scholar 

  41. 41

    Kolar, G.R., Mehta, D., Pelayo, R. & Capra, J.D. A novel human B cell subpopulation representing the initial germinal center population to express AID. Blood 109, 2545–2552 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Marshall, J.L. et al. Early B blasts acquire a capacity for Ig class switch recombination that is lost as they become plasmablasts. Eur. J. Immunol. 41, 3506–3512 (2011).

    CAS  PubMed  Google Scholar 

  43. 43

    Kaji, T. et al. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J. Exp. Med. 209, 2079–2097 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Rosenberg, S.A., Restifo, N.P., Yang, J.C., Morgan, R.A. & Dudley, M.E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8, 299–308 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Bolitho, P. et al. Perforin-mediated suppression of B-cell lymphoma. Proc. Natl. Acad. Sci. USA 106, 2723–2728 (2009).

    CAS  PubMed  Google Scholar 

  46. 46

    Koebel, C.M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    CAS  PubMed  Google Scholar 

  47. 47

    Davidson, W.F., Giese, T. & Fredrickson, T.N. Spontaneous development of plasmacytoid tumors in mice with defective Fas–Fas ligand interactions. J. Exp. Med. 187, 1825–1838 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Stel, A.J. et al. Fas receptor clustering and involvement of the death receptor pathway in rituximab-mediated apoptosis with concomitant sensitization of lymphoma B cells to fas-induced apoptosis. J. Immunol. 178, 2287–2295 (2007).

    CAS  PubMed  Google Scholar 

  49. 49

    Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Lohr, J.G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. USA 109, 3879–3884 (2012).

    CAS  PubMed  Google Scholar 

  51. 51

    Straus, S.E. et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98, 194–200 (2001).

    CAS  PubMed  Google Scholar 

  52. 52

    Müschen, M., Rajewsky, K., Kronke, M. & Kuppers, R. The origin of CD95-gene mutations in B-cell lymphoma. Trends Immunol. 23, 75–80 (2002).

    PubMed  Google Scholar 

  53. 53

    Kojima, Y. et al. Fas and Fas ligand expression on germinal center type-diffuse large B-cell lymphoma is associated with the clinical outcome. Eur. J. Haematol. 76, 465–472 (2006).

    CAS  PubMed  Google Scholar 

  54. 54

    Wang, S.S. et al. Common gene variants in the tumor necrosis factor (TNF) and TNF receptor superfamilies and NF-κB transcription factors and non-Hodgkin lymphoma risk. PLoS ONE 4, e5360 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Harris, J. et al. Cellular (FLICE) like inhibitory protein (cFLIP) expression in diffuse large B-cell lymphoma identifies a poor prognostic subset, but fails to predict the molecular subtype. Hematol. Oncol. 30, 8–12 (2012).

    CAS  PubMed  Google Scholar 

  56. 56

    Novac, N., Baus, D., Dostert, A. & Heinzel, T. Competition between glucocorticoid receptor and NFκB for control of the human FasL promoter. FASEB J. 20, 1074–1081 (2006).

    CAS  PubMed  Google Scholar 

  57. 57

    Esser, M.T., Krishnamurthy, B. & Braciale, V.L. Distinct T cell receptor signaling requirements for perforin- or FasL-mediated cytotoxicity. J. Exp. Med. 183, 1697–1706 (1996).

    CAS  PubMed  Google Scholar 

  58. 58

    Kessler, B. et al. Peptide modification or blocking of CD8, resulting in weak TCR signaling, can activate CTL for Fas- but not perforin-dependent cytotoxicity or cytokine production. J. Immunol. 161, 6939–6946 (1998).

    CAS  PubMed  Google Scholar 

  59. 59

    He, J.S., Gong, D.E. & Ostergaard, H.L. Stored Fas ligand, a mediator of rapid CTL-mediated killing, has a lower threshold for response than degranulation or newly synthesized Fas ligand. J. Immunol. 184, 555–563 (2010).

    CAS  PubMed  Google Scholar 

  60. 60

    Shanker, A. et al. Antigen presented by tumors in vivo determines the nature of CD8+ T-cell cytotoxicity. Cancer Res. 69, 6615–6623 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    CAS  PubMed  Google Scholar 

  62. 62

    Rosenbaum, H. et al. An E μ-v-abl transgene elicits plasmacytomas in concert with an activated myc gene. EMBO J. 9, 897–905 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Hobeika, E. et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc. Natl. Acad. Sci. USA 103, 13789–13794 (2006).

    CAS  PubMed  Google Scholar 

  64. 64

    Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J. 14, 4641–4653 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    CAS  PubMed  Google Scholar 

  66. 66

    Pao, L.I. et al. Functional analysis of granzyme M and its role in immunity to infection. J. Immunol. 175, 3235–3243 (2005).

    CAS  PubMed  Google Scholar 

  67. 67

    Kägi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    PubMed  Google Scholar 

  68. 68

    Cretney, E. et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand–deficient mice. J. Immunol. 168, 1356–1361 (2002).

    CAS  PubMed  Google Scholar 

  69. 69

    Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993).

    CAS  PubMed  Google Scholar 

  70. 70

    O' Reilly, L.A. et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461, 659–663 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    CAS  PubMed  Google Scholar 

  72. 72

    Mittrücker, H.W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    PubMed  Google Scholar 

  73. 73

    Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    CAS  PubMed  Google Scholar 

  74. 74

    Pridans, C. et al. Identification of Pax5 target genes in early B cell differentiation. J. Immunol. 180, 1719–1728 (2008).

    CAS  PubMed  Google Scholar 

  75. 75

    Kupresanin, F. et al. Dendritic cells present lytic antigens and maintain function throughout persistent gamma-herpesvirus infection. J. Immunol. 179, 7506–7513 (2007).

    CAS  PubMed  Google Scholar 

  76. 76

    Schlissel, M.S., Corcoran, L.M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173, 711–720 (1991).

    CAS  PubMed  Google Scholar 

  77. 77

    Holler, N. et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol. Cell. Biol. 23, 1428–1440 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank L. Pasqualucci (Columbia University) for Bcl6-transgenic mice, D. Yu (Monash University) for Cd28−/− mice, M. Reth (Albert-Ludwigs-Universität) for Cd79a-Cre mice, L. Wu (Walter and Eliza Hall Institute of Medical Research (WEHI)) for MHC-I antibodies and A. Brooks (University of Melbourne) for antibodies, D. Gray (WEHI) for TCR antibodies, J. Markham for help with the statistical analysis, and P. Schneider (University of Lausanne) for the Fc-FasL. This work was supported by grants and fellowships from the National Health and Medical Research Council of Australia (G.T.B., L.M.C., S.L.N., D.M.T., A.K., A.S., M.J.S. and L.A.O.), the Australia Research Council (A.K., S.L.N.), the Sylvia and Charles Viertel Foundation and the Howard Hughes Medical Institute (A.K., G.T.B.), the Cancer Council Victoria (D.Z.), Cancer Australia and the Cancer Council New South Wales (L.A.O.), and the Leukemia & Lymphoma Society (A.K., L.A.O. and A.S.). This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government National Health and Medical Research Council Independent Research Institute Infrastructure Support scheme.

Author information




S.A.-S., D.Z. and N.J.B. performed and analyzed the majority of the experiments; A.K.S., L.R., A.E.A. and J.W. conducted and analyzed experiments; F.M. and G.T.B. did infection experiments; L.M.C., L.A.O., A.S., M.J.S., R.J. contributed to the design of experiments; D.M.T. and S.L.N. contributed to the design of the study and the writing of the manuscript; A.K. designed the study, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Axel Kallies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3551 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Afshar-Sterle, S., Zotos, D., Bernard, N. et al. Fas ligand–mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nat Med 20, 283–290 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing