Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis

Subjects

Abstract

Autoimmune diseases often result from an imbalance between regulatory T (Treg) cells and interleukin-17 (IL-17)-producing T helper (TH17) cells; the origin of the latter cells remains largely unknown. Foxp3 is indispensable for the suppressive function of Treg cells, but the stability of Foxp3 has been under debate. Here we show that TH17 cells originating from Foxp3+ T cells have a key role in the pathogenesis of autoimmune arthritis. Under arthritic conditions, CD25loFoxp3+CD4+ T cells lose Foxp3 expression (herein called exFoxp3 cells) and undergo transdifferentiation into TH17 cells. Fate mapping analysis showed that IL-17–expressing exFoxp3 T (exFoxp3 TH17) cells accumulated in inflamed joints. The conversion of Foxp3+CD4+ T cells to TH17 cells was mediated by synovial fibroblast-derived IL-6. These exFoxp3 TH17 cells were more potent osteoclastogenic T cells than were naive CD4+ T cell–derived TH17 cells. Notably, exFoxp3 TH17 cells were characterized by the expression of Sox4, chemokine (C-C motif) receptor 6 (CCR6), chemokine (C-C motif) ligand 20 (CCL20), IL-23 receptor (IL-23R) and receptor activator of NF-κB ligand (RANKL, also called TNFSF11). Adoptive transfer of autoreactive, antigen-experienced CD25loFoxp3+CD4+ T cells into mice followed by secondary immunization with collagen accelerated the onset and increased the severity of arthritis and was associated with the loss of Foxp3 expression in the majority of transferred T cells. We observed IL-17+Foxp3+ T cells in the synovium of subjects with active rheumatoid arthritis (RA), which suggests that plastic Foxp3+ T cells contribute to the pathogenesis of RA. These findings establish the pathological importance of Foxp3 instability in the generation of pathogenic TH17 cells in autoimmunity.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: CD25loFoxp3+ T cells are unstable Foxp3+ T cells that convert to TH17 cells under arthritic conditions.
Figure 2: Localization, marker gene expression and DNA methylation status of exFoxp3 T cells in arthritic mice.
Figure 3: Arthritic synovial fibroblasts promote the conversion of Foxp3+ T cells to TH17 cells in an IL-6–dependent manner.
Figure 4: exFoxp3 TH17 cells are osteoclastogenic T cells with distinct gene profiles.
Figure 5: Pathogenic role of exFoxp3 T cells to arthritis in vivo.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    PubMed  CAS  Article  Google Scholar 

  2. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    PubMed  CAS  Article  Google Scholar 

  3. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    PubMed  CAS  Article  Google Scholar 

  4. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    PubMed  CAS  Article  Google Scholar 

  5. Wan, Y.Y. & Flavell, R.A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    PubMed  CAS  Article  Google Scholar 

  6. Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    PubMed  CAS  Article  Google Scholar 

  7. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  8. Yang, X.O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  9. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  10. Rubtsov, Y.P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  11. Miyao, T. et al. Plasticity of Foxp3+ T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36, 262–275 (2012).

    PubMed  CAS  Article  Google Scholar 

  12. Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl. Acad. Sci. USA 106, 1903–1908 (2009).

    PubMed  CAS  Article  PubMed Central  Google Scholar 

  13. Hirota, K. et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204, 2803–2812 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  14. Murakami, M. et al. Local microbleeding facilitates IL-6– and IL-17–dependent arthritis in the absence of tissue antigen recognition by activated T cells. J. Exp. Med. 208, 103–114 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  15. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    PubMed  CAS  Article  Google Scholar 

  16. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292–304 (2007).

    PubMed  CAS  Article  Google Scholar 

  17. Hashimoto, M. et al. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J. Exp. Med. 207, 1135–1143 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  18. Wu, H.J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  19. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  20. Sakaguchi, S. et al. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13, 461–467 (2013).

    PubMed  CAS  Article  Google Scholar 

  21. Wehrens, E.J., Prakken, B.J. & van Wijk, F. T cells out of control—impaired immune regulation in the inflamed joint. Nat. Rev. Rheumatol. 9, 34–42 (2013).

    PubMed  CAS  Article  Google Scholar 

  22. Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    PubMed  CAS  Article  Google Scholar 

  23. Feuerer, M. et al. Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proc. Natl. Acad. Sci. USA 107, 5919–5924 (2010).

    PubMed  CAS  Article  PubMed Central  Google Scholar 

  24. Zaiss, M.M. et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 56, 4104–4112 (2007).

    PubMed  CAS  Article  Google Scholar 

  25. Sato, K. et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  26. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  27. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  28. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  29. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  30. Malhotra, N. et al. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 38, 681–693 (2013).

    PubMed  CAS  Article  Google Scholar 

  31. Ramezani-Rad, P. et al. SOX4 enables oncogenic survival signals in acute lymphoblastic leukemia. Blood 121, 148–155 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  32. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    PubMed  CAS  Article  Google Scholar 

  33. Sakaguchi, S., Powrie, F. & Ransohoff, R.M. Re-establishing immunological self-tolerance in autoimmune disease. Nat. Med. 18, 54–58 (2012).

    PubMed  CAS  Article  Google Scholar 

  34. Yang, X.P. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12, 247–254 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  35. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  36. Samson, M. et al. Inhibition of IL-6 function corrects Th17/Treg imbalance in rheumatoid arthritis patients. Arthritis Rheum. 64, 2499–2503 (2012).

    PubMed  CAS  Article  Google Scholar 

  37. Nadkarni, S., Mauri, C. & Ehrenstein, M.R. Anti–TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J. Exp. Med. 204, 33–39 (2007).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  38. Nie, H. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 19, 322–328 (2013).

    PubMed  CAS  Article  Google Scholar 

  39. Viatte, S. et al. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  40. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17–deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    PubMed  CAS  Article  Google Scholar 

  41. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    PubMed  CAS  Article  Google Scholar 

  42. Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Hori (RIKEN Center for Integrative Medical Sciences) and Y. Iwakura (Tokyo University of Science) for providing B6.Foxp3hCD2 knock-in mice and Il17a−/− mice, respectively. We also thank T. Negishi-Koga, M. Shinohara, A. Terashima, M. Guerrini, L. Danks, M. Hayashi, T. Ando, Y. Ogiwara, N. Otsuka, T. Kato, C. Tsuda, T. Suda, A. Suematsu, S. Fukuse, Y. Wada, A. Izumi and K. Kaneki for discussion and assistance. This work was supported in part by a grant for the ERATO Takayanagi Osteonetwork Project from JST; a Grant-in-Aid for Challenging Exploratory Research from the Japan Society for the Promotion of Science (JSPS); a Grant-in-Aid for JSPS Fellows; and a grant for the GCOE Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan. N.K. was supported by JSPS Research Fellowships for Young Scientists.

Author information

Authors and Affiliations

Authors

Contributions

N.K. designed and performed experiments, interpreted the results and prepared the manuscript. K.O., S.S., T.N. and M.O. contributed to study design and manuscript preparation. T.K. contributed to microarray analysis. S.T. contributed to the analysis of human RA and osteoarthritis samples. J.A.B. generated Foxp3-GFP-Cre mice and contributed to study design and data interpretation. H.T. directed the project and wrote the manuscript.

Corresponding author

Correspondence to Hiroshi Takayanagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 8095 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Komatsu, N., Okamoto, K., Sawa, S. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20, 62–68 (2014). https://doi.org/10.1038/nm.3432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3432

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing