Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1

Subjects

Abstract

Hypercholesterolemia, typically due to excessive cholesterol uptake, is a major risk factor for cardiovascular disease, which is responsible for 50% of all deaths in developed societies. Although it has been shown that intestinal cholesterol absorption is mediated by vesicular endocytosis of the Niemann-Pick C1–like 1 (NPC1L1) protein1,2, the mechanism of sterol-stimulated NPC1L1 internalization is still mysterious. Here, we identified an endocytic peptide signal, YVNXXF (where X stands for any amino acid), in the cytoplasmic C-terminal tail of NPC1L1. Cholesterol binding on the N-terminal domain of NPC1L1 released the YVNXXF-containing region of NPC1L1 from association with the plasma membrane and enabled Numb binding. We also found that Numb, a clathrin adaptor, specifically recognized this motif and recruited clathrin for internalization. Disrupting the NPC1L1-Numb interaction decreased cholesterol uptake. Ablation of Numb in mouse intestine significantly reduced dietary cholesterol absorption and plasma cholesterol level. Together, these data show that Numb is a pivotal protein for intestinal cholesterol absorption and may provide a therapeutic target for hypercholesterolemia.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Requirement of the YVNXXF motif for NPC1L1 endocytosis and cholesterol uptake.
Figure 2: Numb-NPC1L1 interaction is required for NPC1L1-mediated cholesterol uptake.
Figure 3: Regulation of the proximity of NPC1L1-C to the plasma membrane.
Figure 4: Cholesterol absorption in intestine-specific Numb knockout mice.

References

  1. Altmann, S.W. et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204 (2004).

    Article  CAS  Google Scholar 

  2. Ge, L. et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 7, 508–519 (2008).

    Article  CAS  Google Scholar 

  3. Temel, R.E. et al. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J. Clin. Invest. 117, 1968–1978 (2007).

    Article  CAS  Google Scholar 

  4. Davis, H.R. Jr. et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 279, 33586–33592 (2004).

    Article  CAS  Google Scholar 

  5. Davis, H.R. Jr. & Altmann, S.W. Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim. Biophys. Acta 1791, 679–683 (2009).

    Article  CAS  Google Scholar 

  6. Wang, L.J. & Song, B.L. Niemann-Pick C1-Like 1 and cholesterol uptake. Biochim. Biophys. Acta 1821, 964–972 (2012).

    Article  CAS  Google Scholar 

  7. Chang, T.Y. & Chang, C. Ezetimibe blocks internalization of the NPC1L1/cholesterol complex. Cell Metab. 7, 469–471 (2008).

    Article  CAS  Google Scholar 

  8. Zhang, J.H. et al. The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J. Biol. Chem. 286, 25088–25097 (2011).

    Article  CAS  Google Scholar 

  9. Kwon, H.J., Palnitkar, M. & Deisenhofer, J. The structure of the NPC1L1 N-terminal domain in a closed conformation. PLoS ONE 6, e18722 (2011).

    Article  CAS  Google Scholar 

  10. Ge, L. et al. Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc. Natl. Acad. Sci. USA 108, 551–556 (2011).

    Article  Google Scholar 

  11. Weinglass, A.B. et al. Extracellular loop C of NPC1L1 is important for binding to ezetimibe. Proc. Natl. Acad. Sci. USA 105, 11140–11145 (2008).

    Article  Google Scholar 

  12. Chang, T.Y., Chang, C.C., Ohgami, N. & Yamauchi, Y. Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol. 22, 129–157 (2006).

    Article  CAS  Google Scholar 

  13. Davies, J.P., Scott, C., Oishi, K., Liapis, A. & Ioannou, Y.A. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J. Biol. Chem. 280, 12710–12720 (2005).

    Article  CAS  Google Scholar 

  14. Wang, L.J. et al. Molecular characterization of the NPC1L1 variants identified from cholesterol low absorbers. J. Biol. Chem. 286, 7397–7408 (2011).

    Article  CAS  Google Scholar 

  15. Gulino, A., Di Marcotullio, L. & Screpanti, I. The multiple functions of Numb. Exp. Cell Res. 316, 900–906 (2010).

    Article  CAS  Google Scholar 

  16. Roncarati, R. et al. The γ-secretase–generated intracellular domain of β-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc. Natl. Acad. Sci. USA 99, 7102–7107 (2002).

    Article  CAS  Google Scholar 

  17. Dho, S.E. et al. The mammalian numb phosphotyrosine-binding domain. Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX. J. Biol. Chem. 273, 9179–9187 (1998).

    Article  CAS  Google Scholar 

  18. Nishimura, T. & Kaibuchi, K. Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev. Cell 13, 15–28 (2007).

    Article  CAS  Google Scholar 

  19. Tong, X. et al. Numb independently antagonizes Sanpodo membrane targeting and Notch signaling in Drosophila sensory organ precursor cells. Mol. Biol. Cell 21, 802–810 (2010).

    Article  CAS  Google Scholar 

  20. Aivazian, D. & Stern, L.J. Phosphorylation of T cell receptor ζ is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

    Article  CAS  Google Scholar 

  21. Wang, J. et al. Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption. J. Lipid Res. 50, 1653–1662 (2009).

    Article  CAS  Google Scholar 

  22. Motamed, M. et al. Identification of luminal Loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis. J. Biol. Chem. 286, 18002–18012 (2011).

    Article  CAS  Google Scholar 

  23. Kwon, H.J. et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137, 1213–1224 (2009).

    Article  Google Scholar 

  24. Klein, A.L., Zilian, O., Suter, U. & Taylor, V. Murine numb regulates granule cell maturation in the cerebellum. Dev. Biol. 266, 161–177 (2004).

    Article  CAS  Google Scholar 

  25. Li, H.S. et al. Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40, 1105–1118 (2003).

    Article  CAS  Google Scholar 

  26. Colaluca, I.N. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

    Article  CAS  Google Scholar 

  27. Nie, J. et al. LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBO J. 21, 93–102 (2002).

    Article  CAS  Google Scholar 

  28. Yogosawa, S., Miyauchi, Y., Honda, R., Tanaka, H. & Yasuda, H. Mammalian Numb is a target protein of Mdm2, ubiquitin ligase. Biochem. Biophys. Res. Commun. 302, 869–872 (2003).

    Article  CAS  Google Scholar 

  29. Susini, L. et al. Siah-1 binds and regulates the function of Numb. Proc. Natl. Acad. Sci. USA 98, 15067–15072 (2001).

    Article  CAS  Google Scholar 

  30. Smith, C.A. et al. aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J. 26, 468–480 (2007).

    Article  CAS  Google Scholar 

  31. Goldstein, J.L., Basu, S.K. & Brown, M.S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 98, 241–260 (1983).

    Article  CAS  Google Scholar 

  32. Brown, A.J., Sun, L., Feramisco, J.D., Brown, M.S. & Goldstein, J.L. Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol. Cell 10, 237–245 (2002).

    Article  CAS  Google Scholar 

  33. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  Google Scholar 

  34. Xie, C. et al. Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine. J. Lipid Res. 53, 2092–2101 (2012).

    Article  CAS  Google Scholar 

  35. Tang, J.J. et al. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 13, 44–56 (2011).

    Article  CAS  Google Scholar 

  36. Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    Article  CAS  Google Scholar 

  37. el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    Article  CAS  Google Scholar 

  38. Salisbury, B.G. et al. Hypocholesterolemic activity of a novel inhibitor of cholesterol absorption, SCH 48461. Atherosclerosis 115, 45–63 (1995).

    Article  CAS  Google Scholar 

  39. Luo, J. et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236–1247 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y.-X. Qu, J. Xu and J. Qin for technical assistance. We thank W. Qi for helpful discussion and revision of the paper. We thank S. Robine (Institut Curie) for the gift of transgenic mice (heterozygous for villin-Cre-ERT2). We thank S. Kathiresan, X. Lin and X.-F. Lu for discussions. This work was supported by grants from the Ministry of Science and Technology of China (2009CB919000, 2011CB910900 and 2012CB524900), National Natural Science Foundation of China (30925012, 31230020, 81260041, 81270155 and 91213306), Shanghai Science and Technology Committee (11JC1414100) and Xinjiang Science and Technology Department (2013911111).

Author information

Authors and Affiliations

Authors

Contributions

P.-S.L., C.-Q.X., Y.-T.M., B.-L.L. and B.-L.S. conceived the project. P.-S.L. and B.-L.S. designed the experiments. P.-S.L., Z.-Y.F., Y.-Y.Z. and J.-H.Z. performed the experiments. P.-S.L., C.-Q.X., B.-L.L. and B.-L.S. analyzed the data. P.-S.L. and B.-L.S. wrote the paper.

Corresponding author

Correspondence to Bao-Liang Song.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 2418 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, PS., Fu, ZY., Zhang, YY. et al. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat Med 20, 80–86 (2014). https://doi.org/10.1038/nm.3417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing