Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering

Abstract

Ammonia is a ubiquitous waste product of protein metabolism that can accumulate in numerous metabolic disorders, causing neurological dysfunction ranging from cognitive impairment to tremor, ataxia, seizures, coma and death1. The brain is especially vulnerable to ammonia as it readily crosses the blood-brain barrier in its gaseous form, NH3, and rapidly saturates its principal removal pathway located in astrocytes2. Thus, we wanted to determine how astrocytes contribute to the initial deterioration of neurological functions characteristic of hyperammonemia in vivo. Using a combination of two-photon imaging and electrophysiology in awake head-restrained mice, we show that ammonia rapidly compromises astrocyte potassium buffering, increasing extracellular potassium concentration and overactivating the Na+-K+-2Cl cotransporter isoform 1 (NKCC1) in neurons. The consequent depolarization of the neuronal GABA reversal potential (EGABA) selectively impairs cortical inhibitory networks. Genetic deletion of NKCC1 or inhibition of it with the clinically used diuretic bumetanide potently suppresses ammonia-induced neurological dysfunction. We did not observe astrocyte swelling or brain edema in the acute phase, calling into question current concepts regarding the neurotoxic effects of ammonia3,4. Instead, our findings identify failure of potassium buffering in astrocytes as a crucial mechanism in ammonia neurotoxicity and demonstrate the therapeutic potential of blocking this pathway by inhibiting NKCC1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ammonia causes severe neurological impairment and seizures.
Figure 2: Ammonia compromises astroglial potassium buffering by competing for uptake.
Figure 3: Excess ammonia and potassium depolarize EGABA via NKCC1.
Figure 4: Inhibiting NKCC1 with bumetanide attenuates cortical disinhibition, reduces neurological dysfunction and improves survival following ammonia neurotoxicity.

Similar content being viewed by others

References

  1. Cagnon, L. & Braissant, O. Hyperammonemia-induced toxicity for the developing central nervous system. Brain Res. Rev. 56, 183–197 (2007).

    CAS  PubMed  Google Scholar 

  2. Cooper, A.J. 13N as a tracer for studying glutamate metabolism. Neurochem. Int. 59, 456–464 (2011).

    CAS  PubMed  Google Scholar 

  3. Butterworth, R.F. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab. Brain Dis. 17, 221–227 (2002).

    CAS  PubMed  Google Scholar 

  4. Jayakumar, A.R. et al. Na-K-Cl Cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J. Biol. Chem. 283, 33874–33882 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ip, Y.K. & Chew, S.F. Ammonia production, excretion, toxicity, and defense in fish: a review. Front. Physiol. 1, 134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Marcaggi, P., Jeanne, M. & Coles, J.A. Neuron-glial trafficking of NH4+ and K+: separate routes of uptake into glial cells of bee retina. Eur. J. Neurosci. 19, 966–976 (2004).

    PubMed  Google Scholar 

  7. Waniewski, R.A. Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J. Neurochem. 58, 167–174 (1992).

    CAS  PubMed  Google Scholar 

  8. Yamamoto, Y. et al. Risk factors for hyperammonemia in pediatric patients with epilepsy. Epilepsia 54, 983–989 (2013).

    CAS  PubMed  Google Scholar 

  9. Ye, X. et al. Adenovirus-mediated in vivo gene transfer rapidly protects ornithine transcarbamylase-deficient mice from an ammonium challenge. Pediatr. Res. 41, 527–534 (1997).

    CAS  PubMed  Google Scholar 

  10. Rangroo Thrane, V. et al. Real-time analysis of microglial activation and motility in hepatic and hyperammonemic encephalopathy. Neuroscience 220, 247–255 (2012).

    CAS  PubMed  Google Scholar 

  11. Ratnakumari, L., Qureshi, I.A. & Butterworth, R.F. Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem. Biophys. Res. Commun. 184, 746–751 (1992).

    CAS  PubMed  Google Scholar 

  12. Martinez-Hernandez, A., Bell, K.P. & Norenberg, M.D. Glutamine synthetase: glial localization in brain. Science 195, 1356–1358 (1977).

    CAS  PubMed  Google Scholar 

  13. Ratnakumari, L., Audet, R., Qureshi, I.A. & Butterworth, R.F. Na+,K+-ATPase activites are increased in brain in both congenital and acquired hyperammonemic syndromes. Neurosci. Lett. 197, 89–92 (1995).

    CAS  PubMed  Google Scholar 

  14. Lichter-Konecki, U., Mangin, J.M., Gordish-Dressman, H., Hoffman, E.P. & Gallo, V. Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo. Glia 56, 365–377 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Thrane, A.S. et al. Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc. Natl. Acad. Sci. USA 108, 846–851 (2011).

    CAS  PubMed  Google Scholar 

  16. Thrane, A.S. et al. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc. Natl. Acad. Sci. USA 109, 18974–18979 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stephan, J. et al. Kir4.1 channels mediate a depolarization of hippocampal astrocytes under hyperammonemic conditions in situ. Glia 60, 965–978 (2012).

    PubMed  Google Scholar 

  18. Wall, S.M. & Koger, L.M. NH4+ transport mediated by Na+-K+-ATPase in rat inner medullary collecting duct. Am. J. Physiol. 267, F660–F670 (1994).

    CAS  PubMed  Google Scholar 

  19. Nicholson, C. Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment. J. Neurosci. Methods 48, 199–213 (1993).

    CAS  PubMed  Google Scholar 

  20. DeSalvo, M.N. et al. Focal BOLD fMRI changes in bicuculline-induced tonic-clonic seizures in the rat. Neuroimage 50, 902–909 (2010).

    PubMed  Google Scholar 

  21. Wang, F. et al. Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K. Sci. Signal. 5, ra26 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Xiong, Z.Q. & Stringer, J.L. Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J. Neurophysiol. 83, 1443–1451 (2000).

    CAS  PubMed  Google Scholar 

  23. Lux, H.D. Ammonium and chloride extrusion: hyperpolarizing syntaptic inhibition in spinal motor neurons. Science 173, 555–557 (1971).

    CAS  PubMed  Google Scholar 

  24. Raabe, W. & Gumnit, R.J. Disinhibition in cat motor cortex by ammonia. J. Neurophysiol. 38, 347–355 (1975).

    CAS  PubMed  Google Scholar 

  25. Szerb, J.C. & Butterworth, R.F. Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog. Neurobiol. 39, 135–153 (1992).

    CAS  PubMed  Google Scholar 

  26. Dzhala, V.I. et al. NKCC1 transporter facilitates seizures in the developing brain. Nat. Med. 11, 1205–1213 (2005).

    CAS  PubMed  Google Scholar 

  27. Koyama, R. et al. GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy. Nat. Med. 18, 1271–1278 (2012).

    CAS  PubMed  Google Scholar 

  28. Borgdorff, A.J., Poulet, J.F. & Petersen, C.C. Facilitating sensory responses in developing mouse somatosensory barrel cortex. J. Neurophysiol. 97, 2992–3003 (2007).

    PubMed  Google Scholar 

  29. Rivera, C. et al. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).

    CAS  PubMed  Google Scholar 

  30. Hübner, C.A. et al. Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30, 515–524 (2001).

    PubMed  Google Scholar 

  31. Delpire, E., Lu, J., England, R., Dull, C. & Thorne, T. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat. Genet. 22, 192–195 (1999).

    CAS  PubMed  Google Scholar 

  32. Flagella, M. et al. Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J. Biol. Chem. 274, 26946–26955 (1999).

    CAS  PubMed  Google Scholar 

  33. Raabe, W.A. Ammonia and disinhibition in cat motor cortex by ammonium acetate, monofluoroacetate and insulin-induced hypoglycemia. Brain Res. 210, 311–322 (1981).

    CAS  PubMed  Google Scholar 

  34. Huberfeld, G. et al. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J. Neurosci. 27, 9866–9873 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hannaert, P., Alvarez-Guerra, M., Pirot, D., Nazaret, C. & Garay, R.P. Rat NKCC2/NKCC1 cotransporter selectivity for loop diuretic drugs. Naunyn Schmiedebergs Arch. Pharmacol. 365, 193–199 (2002).

    CAS  PubMed  Google Scholar 

  36. Benjamin, A.M. Effects of ammonium ions on spontaneous action potentials and on contents of sodium, potassium, ammonium, and chloride ions in brain in vitro. J. Neurochem. 30, 131–143 (1978).

    CAS  PubMed  Google Scholar 

  37. Dzhala, V.I. et al. Progressive NKCC1-dependent neuronal chloride accumulation during neonatal seizures. J. Neurosci. 30, 11745–11761 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanaka, C. et al. The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104, 933–946 (2001).

    CAS  PubMed  Google Scholar 

  39. Javaheri, S., Davis, C. & Rogers, D.H. Ionic composition of cisternal CSF in acute respiratory acidosis: lack of effect of large dose bumetanide. J. Neurochem. 61, 1525–1529 (1993).

    CAS  PubMed  Google Scholar 

  40. Regan, M.R. et al. Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J. Neurosci. 27, 6607–6619 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Guyenet, S.J. et al. A simple composite phenotype scoring system for evaluating mouse models of cerebellar ataxia. J. Vis. Exp. 1787 (2010).

  42. Matkowskyj, K.A. et al. Azoxymethane-induced fulminant hepatic failure in C57BL/6J mice: characterization of a new animal model. Am. J. Physiol. 277, G455–G462 (1999).

    CAS  PubMed  Google Scholar 

  43. Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Anagnostaras, S.G., Josselyn, S.A., Frankland, P.W. & Silva, A.J. Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice. Learn. Mem. 7, 58–72 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wiltgen, B.J. & Silva, A.J. Memory for context becomes less specific with time. Learn. Mem. 14, 313–317 (2007).

    PubMed  Google Scholar 

  46. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, F., Xiao, C. & Ye, J.H. Taurine activates excitatory non-synaptic glycine receptors on dopamine neurones in ventral tegmental area of young rats. J. Physiol. (Lond.) 565, 503–516 (2005).

    CAS  Google Scholar 

  48. Lin, J.H. et al. Gap-junction-mediated propagation and amplification of cell injury. Nat. Neurosci. 1, 494–500 (1998).

    CAS  PubMed  Google Scholar 

  49. Anupama Adya, H.V. & Mallick, B.N. Comparison of Na-K ATPase activity in rat brain synaptosome under various conditions. Neurochem. Int. 33, 283–286 (1998).

    CAS  PubMed  Google Scholar 

  50. Mondzac, A., Ehrlich, G.E. & Seegmiller, J.E. An enzymatic determination of ammonia in biological fluids. J. Lab. Clin. Med. 66, 526–531 (1965).

    CAS  PubMed  Google Scholar 

  51. Takano, T. et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nat. Neurosci. 10, 754–762 (2007).

    CAS  PubMed  Google Scholar 

  52. Ren, Z. et al. 'Hit & Run' model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J. Cereb. Blood Flow Metab. 33, 834–845 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haj-Yasein, N.N. et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc. Natl. Acad. Sci. USA 108, 17815–17820 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zwingmann, C., Chatauret, N., Leibfritz, D. & Butterworth, R.F. Selective increase of brain lactate synthesis in experimental acute liver failure: results of a [1H–13C] nuclear magnetic resonance study. Hepatology 37, 420–428 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.J. Cooper for discussion of the study, S. Kennedy for help with 1H-NMR experiments, L.K. Bekar for help with electrophysiology, J. Chang for designing MatLab software, D. Wang for advice regarding electroencephalogram analysis, J.M. Wilson (University of Pennsylvania) for providing the Otcspf-ash mice, J.D. Rothstein (Johns Hopkins University) for providing Glt1-eGFP BAC transgenic mice and C. Nicholson and S. Hrabetova for advice on fabrication and use of ion-sensitive electrodes. This work was supported by the US National Institutes of Health (grants NS078304 and NS078167 to M.N. and F31NS073390 to N.A.S.), Research Council of Norway (NevroNor FRIMEDBIO grants to E.A.N.), European Commission FP7-ICT-9-601055 to E.A.N., the Molecular Life Science program at the University of Oslo, the Letten Foundation and the Fulbright Foundation.

Author information

Authors and Affiliations

Authors

Contributions

V.R.T., A.S.T., E.A.N., M.L.C. and M.N. planned the project. V.R.T., A.S.T., M.L.C., E.A.N. and M.N. wrote the manuscript. V.R.T. and A.S.T. performed in vivo electrophysiology, imaging and data analysis. F.W., N.K. and Q.X. performed in situ electrophysiology. A.S.T., V.R.T. and M.C. performed behavioral experiments. A.S.T., V.R.T. and Q.X. performed in situ imaging. N.A.S. performed rubidium experiments. T.F. performed ATPase experiments. M.L.C. performed immunohistochemistry.

Corresponding author

Correspondence to Alexander S Thrane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1 and 2 (PDF 996 kb)

Supplementary Video 1

Myoclonic seizures and decreased spontaneous movement following acute ammonia load in Otcspf-ash mouse. (MP4 7293 kb)

Spontaneous astrocyte calcium signals (baseline).

Two-photon imaging was performed in awake Otcspf-ash mice. Calcium indicator, rhod-2, fluorescence is pseudocolored so that yellow represents higher and blue lower calcium concentration. Time (s) is shown in the top right corner. Scale bar represents 30 μm. (MOV 2945 kb)

Spontaneous astrocyte calcium signals during ammonia neurotoxicity.

Two-photon imaging was performed in awake Otcspf-ash mice. Calcium indicator, rhod-2, fluorescence is pseudocolored so that yellow represents higher and blue lower calcium concentration. Time (s) is shown in the top right corner. Scale bar represents 30 μm. (MOV 1694 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangroo Thrane, V., Thrane, A., Wang, F. et al. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 19, 1643–1648 (2013). https://doi.org/10.1038/nm.3400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing