Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In search of the molecular mechanism of intracellular membrane fusion and neurotransmitter release

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The mechanism of neurotransmitter release and recycling.
Figure 2: An initial model of the vesicle fusion complex.
Figure 3: Model of the membrane fusion reaction.
Figure 4: The two possible engagements of SNARE coils suggested different functions.
Figure 5: A later model of the vesicle fusion complex.
Figure 6: Specific sets of SNARE proteins mediate intracellular membrane trafficking in all cells.

References

  1. Heuser, J.E. & Reese, T.S. Evidence for recycling of synaptic vesicle membrane during neurotransmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    CAS  Article  Google Scholar 

  2. Hooper, J.E., Carlson, S.S. & Kelly, R.B. Antibodies to synaptic vesicles purified from narcine electric organ bind a subclass of mammalian nerve terminals. J. Cell Biol. 87, 104–113 (1980).

    CAS  Article  Google Scholar 

  3. Trimble, W.S., Cowan, D.M. & Scheller, R.H. VAMP-1: A synaptic vesicle–associated integral membrane protein. Proc. Natl. Acad. Sci. USA 85, 4538–4542 (1988).

    CAS  Article  Google Scholar 

  4. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    CAS  Article  Google Scholar 

  5. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  Google Scholar 

  6. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  7. Misura, K.M., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404, 355–362 (2000).

    CAS  Article  Google Scholar 

  8. Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094 (1997).

    CAS  Article  Google Scholar 

  9. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    CAS  Article  Google Scholar 

  10. Hay, J.C. & Martin T.F. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J. Cell Biol. 119, 139–151 (1992).

    CAS  Article  Google Scholar 

  11. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–74 (1999).

    CAS  Article  Google Scholar 

  12. Südhof, T.C. A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat. Med. 19, 1227–1231 (2013).

    Article  Google Scholar 

  13. Scales, S.J., Yoo, B.Y. & Scheller, R.H. The ionic layer is required for efficient dissociation of the SNARE complex by α-SNAP and NSF. Proc. Natl. Acad. Sci. USA 98, 14262–14267 (2001).

    CAS  Article  Google Scholar 

  14. Hua, Y. & Scheller, R.H. Three SNARE complexes cooperate to mediate membrane fusion. Proc. Natl. Acad. Sci. USA 98, 8065–8070 (2001).

    CAS  Article  Google Scholar 

  15. Bennett, M.K. et al. The syntaxin family of vesicular transport receptors. Cell 74, 863–873 (1993).

    CAS  Article  Google Scholar 

  16. Hay, J.C., Chao, D.S., Kuo, C.S. & Scheller, R.H. Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Cell 89, 149–158 (1997).

    CAS  Article  Google Scholar 

  17. Bock, J.B., Matern, H.T., Peden, A.A. & Scheller, R.H. A genomic perspective on membrane compartment organization. Nature 409, 839–841 (2001).

    CAS  Article  Google Scholar 

  18. Scales, S.J. et al. SNAREs contribute to the specificity of membrane fusion. Neuron 26, 457–64 (2000).

    CAS  Article  Google Scholar 

  19. McNew, J.A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

    CAS  Article  Google Scholar 

  20. Bennett, M.K. & Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 90, 2559–2563 (1993).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I would like to especially thank the many members of my laboratory group whom I have had the pleasure to work with over the years. I regret that all of your accomplishments could not be mentioned individually. Also, I would like to thank the others in this field who have made many important contributions too numerous to mention in this short Essay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H Scheller.

Ethics declarations

Competing interests

R.H.S. is employed by Genentech, Inc.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scheller, R. In search of the molecular mechanism of intracellular membrane fusion and neurotransmitter release. Nat Med 19, 1232–1235 (2013). https://doi.org/10.1038/nm.3339

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing