Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification

Subjects

This article has been updated

Abstract

Heterotopic ossification, the pathologic formation of extraskeletal bone, occurs as a common complication of trauma or in genetic disorders and can be disabling and lethal. However, the underlying molecular mechanisms are largely unknown. Here we demonstrate that Gαs restricts bone formation to the skeleton by inhibiting Hedgehog signaling in mesenchymal progenitor cells. In progressive osseous heteroplasia, a human disease caused by null mutations in GNAS, which encodes Gαs, Hedgehog signaling is upregulated in ectopic osteoblasts and progenitor cells. In animal models, we show that genetically-mediated ectopic Hedgehog signaling is sufficient to induce heterotopic ossification, whereas inhibition of this signaling pathway by genetic or pharmacological means strongly reduces the severity of this condition. As our previous work has shown that GNAS gain-of-function mutations upregulate WNT–β-catenin signaling in osteoblast progenitor cells, resulting in their defective differentiation and fibrous dysplasia, we identify Gαs as a key regulator of proper osteoblast differentiation through its maintenance of a balance between the Wnt–β-catenin and Hedgehog pathways. Also, given the results here of the pharmacological studies in our mouse model, we propose that Hedgehog inhibitors currently used in the clinic for other conditions, such as cancer, may possibly be repurposed for treating heterotopic ossification and other diseases caused by GNAS inactivation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of Gnas in limb mesenchyme leads to heterotopic ossification.
Figure 2: Loss of Gnas in adult subcutaneous tissue leads to heterotopic ossification.
Figure 3: Removal of Gnas from mesenchymal progenitor cells upregulates Hedgehog signaling in vitro and in vivo.
Figure 4: Gαs acts through cAMP and PKA to suppress Hedgehog signaling.
Figure 5: Reducing Hedgehog signaling inhibits heterotopic ossification in vivo and in vitro.
Figure 6: Hedgehog signaling is activated in ectopic bone from individuals with POH, and activation of Hedgehog signaling is sufficient to cause heterotopic ossification.

Similar content being viewed by others

Change history

  • 18 October 2013

     In the version of this article initially published online, the gene symbol for Prrx1 was misidentified as Prdx1 in four instances. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Shore, E.M. & Kaplan, F.S. Inherited human diseases of heterotopic bone formation. Nat. Rev. Rheumatol. 6, 518–527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shore, E.M. et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 38, 525–527 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Wozney, J.M. et al. Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–1534 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Kaplan, F.S., Hahn, G.V. & Zasloff, M.A. Heterotopic ossification: two rare forms and what they can teach us. J. Am. Acad. Orthop. Surg. 2, 288–296 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Eddy, M.C. et al. Deficiency of the α-subunit of the stimulatory G protein and severe extraskeletal ossification. J. Bone Miner. Res. 15, 2074–2083 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Trüeb, R.M., Panizzon, R.G. & Burg, G. Cutaneous ossification in Albright's hereditary osteodystrophy. Dermatology 186, 205–209 (1993).

    Article  PubMed  Google Scholar 

  7. Shore, E.M. et al. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N. Engl. J. Med. 346, 99–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Plagge, A., Kelsey, G. & Germain-Lee, E.L. Physiological functions of the imprinted Gnas locus and its protein variants Gαs and XLαs in human and mouse. J. Endocrinol. 196, 193–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Riminucci, M., Robey, P.G., Saggio, I. & Bianco, P. Skeletal progenitors and the GNAS gene: fibrous dysplasia of bone read through stem cells. J. Mol. Endocrinol. 45, 355–364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Regard, J.B. et al. Wnt/β-catenin signaling is differentially regulated by Gα proteins and contributes to fibrous dysplasia. Proc. Natl. Acad. Sci. USA 108, 20101–20106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, J.Y. et al. Gsα enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J. Clin. Invest. 121, 3492–3504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang, J. & Struhl, G. Protein kinase A and hedgehog signaling in Drosophila limb development. Cell 80, 563–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Tuson, M., He, M. & Anderson, K.V. Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development 138, 4921–4930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, J. & Hui, C.C. Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. St-Jacques, B., Hammerschmidt, M. & McMahon, A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bastepe, M. et al. Stimulatory G protein directly regulates hypertrophic differentiation of growth plate cartilage in vivo. Proc. Natl. Acad. Sci. USA 101, 14794–14799 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sakamoto, A., Chen, M., Kobayashi, T., Kronenberg, H.M. & Weinstein, L.S. Chondrocyte-specific knockout of the G protein Gsα leads to epiphyseal and growth plate abnormalities and ectopic chondrocyte formation. J. Bone Miner. Res. 20, 663–671 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Sakamoto, H. et al. A kinetic study of the mechanism of conversion of α-hydroxyheme to verdoheme while bound to heme oxygenase. Biochem. Biophys. Res. Commun. 338, 578–583 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ogden, S.K. et al. G protein Gαi functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456, 967–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riobo, N.A., Saucy, B., Dilizio, C. & Manning, D.R. Activation of heterotrimeric G proteins by Smoothened. Proc. Natl. Acad. Sci. USA 103, 12607–12612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Low, W.C. et al. The decoupling of Smoothened from Gαi proteins has little effect on Gli3 protein processing and Hedgehog-regulated chick neural tube patterning. Dev. Biol. 321, 188–196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vanden Bossche, L. & Vanderstraeten, G. Heterotopic ossification: a review. J. Rehabil. Med. 37, 129–136 (2005).

    Article  PubMed  Google Scholar 

  23. Pignolo, R.J. et al. Heterozygous inactivation of Gnas in adipose-derived mesenchymal progenitor cells enhances osteoblast differentiation and promotes heterotopic ossification. J. Bone Miner. Res. 26, 2647–2655 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Huso, D.L. et al. Heterotopic ossifications in a mouse model of Albright hereditary osteodystrophy. PLoS ONE 6, e21755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Hill, T.P., Spater, D., Taketo, M.M., Birchmeier, W. & Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Day, T.F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Hu, H. et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132, 49–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Holmen, S.L. et al. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem. 280, 21162–21168 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Logan, C.Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Keely, S.L. Jr., Corbin, J.D. & Park, C.R. On the question of translocation of heart cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 72, 1501–1504 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seamon, K. & Daly, J.W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J. Biol. Chem. 256, 9799–9801 (1981).

    CAS  PubMed  Google Scholar 

  33. Goodrich, L.V., Milenkovic, L., Higgins, K.M. & Scott, M.P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Ribes, V. & Briscoe, J. Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback. Cold Spring Harb. Perspect. Biol. 1, a002014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Svärd, J. et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell 10, 187–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Ingham, P.W. & McMahon, A.P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, B., Fallon, J.F. & Beachy, P.A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Q. et al. Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase. Proc. Natl. Acad. Sci. USA 106, 21191–21196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan, Y., Wang, C. & Wang, B. Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev. Biol. 326, 177–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. te Welscher, P. et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298, 827–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Matise, M.P., Epstein, D.J., Park, H.L., Platt, K.A. & Joyner, A.L. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125, 2759–2770 (1998).

    CAS  PubMed  Google Scholar 

  42. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, J., Lee, J.J., Gardner, D. & Beachy, P.A. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc. Natl. Acad. Sci. USA 107, 13432–13437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lauth, M., Bergstrom, A., Shimokawa, T. & Toftgard, R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci. USA 104, 8455–8460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bai, C.B. & Joyner, A.L. Gli1 can rescue the in vivo function of Gli2. Development 128, 5161–5172 (2001).

    CAS  PubMed  Google Scholar 

  46. Joeng, K.S. & Long, F. The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development 136, 4177–4185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 66, 10171–10178 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mukhopadhyay, S. et al. The ciliary G-protein–coupled receptor Gpr161 negatively regulates the Sonic Hedgehog pathway via cAMP signaling. Cell 152, 210–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Day, T.F. & Yang, Y. Wnt and hedgehog signaling pathways in bone development. J. Bone Joint Surg. Am. 90 (suppl. 1), 19–24 (2008).

    Article  PubMed  Google Scholar 

  50. Joeng, K.S., Schumacher, C.A., Zylstra-Diegel, C.R., Long, F. & Williams, B.O. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev. Biol. 359, 222–229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Holmen, S.L. et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J. Bone Miner. Res. 19, 2033–2040 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. de Boer, J. et al. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 34, 818–826 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Cho, H.H. et al. Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. Tissue Eng. 12, 111–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Boland, G.M., Perkins, G., Hall, D.J. & Tuan, R.S. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J. Cell. Biochem. 93, 1210–1230 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, Y. β-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 4, e249 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, J.B. et al. Bone regeneration is regulated by Wnt signaling. J. Bone Miner. Res. 22, 1913–1923 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Cooper, K.L. et al. Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science 332, 1083–1086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roselló-Diez, A., Ros, M.A. & Torres, M. Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision. Science 332, 1086–1088 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, D. et al. ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. J. Bone Miner. Res. 18, 1593–1604 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Shimono, K. et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat. Med. 17, 454–460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, M. et al. Increased glucose tolerance and reduced adiposity in the absence of fasting hypoglycemia in mice with liver-specific Gsα deficiency. J. Clin. Invest. 115, 3217–3227 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Logan, M. et al. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prrx1 enhancer. Genesis 33, 77–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, K. et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130, 3063–3074 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Nelson, D.K. & Williams, T. Frontonasal process-specific disruption of AP-2α results in postnatal midfacial hypoplasia, vascular anomalies, and nasal cavity defects. Dev. Biol. 267, 72–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Mak, K.K., Chen, M.H., Day, T.F., Chuang, P.T. & Yang, Y. Wnt–β-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 133, 3695–3707 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Bai, C.B. & Joyner, A.L. Gli1 can rescue the in vivo function of Gli2. Development 128, 5161–5172 (2001).

    CAS  PubMed  Google Scholar 

  67. Corrales, J.D., Blaess, S., Mahoney, E.M. & Joyner, A.L. The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 133, 1811–1821 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Long, F., Zhang, X.M., Karp, S., Yang, Y. & McMahon, A.P. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128, 5099–5108 (2001).

    CAS  PubMed  Google Scholar 

  69. Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 66, 10171–10178 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Regard, J.B. et al. Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J. Clin. Invest. 117, 4034–4043 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang, J. et al. Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proc. Natl. Acad. Sci. USA 97, 9984–9989 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, Y., Topol, L., Lee, H. & Wu, J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130, 1003–1015 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Storm, E.E. & Kingsley, D.M. GDF5 coordinates bone and joint formation during digit development. Dev. Biol. 209, 11–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Bai, C.B., Stephen, D. & Joyner, A.L. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev. Cell 6, 103–115 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the entire Yang lab for stimulating discussions. We thank J. Fekecs and P. Andre for helping with the data illustration. The work in the Yang and Weinstein labs was supported by the intramural research programs of NHGRI and NIDDK at the US National Institutes of Health (NIH), respectively. We thank R. Caron for his work on the POH lesion histological analyses. The rabbit anti-Gli3 antibody was provided by S. Mackem (NIH NCI), and the dnPKA adenovirus was a gift from C.-M. Fan (Carnegie Institution for Science). The work in the Kaplan and Shore lab was supported by the Progressive Osseous Heteroplasia Association, the University of Pennsylvania Center for Research in FOP and Related Disorders, the Penn Center for Musculoskeletal Disorders (NIH NIAMS P30-AR050950), the Isaac and Rose Nassau Professorship of Orthopaedic Molecular Medicine and NIH NIAMS (R01-AR046831 and R01-AR41916).

Author information

Authors and Affiliations

Authors

Contributions

J.B.R., D.M. and Y.Y. designed the experiments and analyzed the data. J.B.R., D.M., F.S.K., E.M.S. and Y.Y. wrote the manuscript. J.B.R., D.M., J.G.-J., M.J. and J.L. carried out the actual experiments. F.S.K. saw the patients with POH. F.S.K. and E.M.S. provided the POH samples and carried out the GLI immunohistochemistry on the human samples. M.C. and L.S.W. generated and provided the Gnasfl/fl mice.

Corresponding authors

Correspondence to Jean B Regard or Yingzi Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 18527 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regard, J., Malhotra, D., Gvozdenovic-Jeremic, J. et al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat Med 19, 1505–1512 (2013). https://doi.org/10.1038/nm.3314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing