Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A liver Hif-2α–Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition

Subjects

Abstract

Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis1,2. The liver possesses a rich sinusoidal capillary network with a higher degree of hypoxia and lower gluconeogenesis in the perivenous zone as compared to the rest of the organ3. Here, we show that diverse vascular endothelial growth factor (VEGF) inhibitors improved glucose tolerance in nondiabetic C57BL/6 and diabetic db/db mice, potentiating hepatic insulin signaling with lower gluconeogenic gene expression, higher glycogen storage and suppressed hepatic glucose production. VEGF inhibition induced hepatic hypoxia through sinusoidal vascular regression and sensitized liver insulin signaling through hypoxia-inducible factor-2α (Hif-2α, encoded by Epas1) stabilization. Notably, liver-specific constitutive activation of HIF-2α, but not HIF-1α, was sufficient to augment hepatic insulin signaling through direct and indirect induction of insulin receptor substrate-2 (Irs2), an essential insulin receptor adaptor protein4,5,6. Further, liver Irs2 was both necessary and sufficient to mediate Hif-2α and Vegf inhibition effects on glucose tolerance and hepatic insulin signaling. These results demonstrate an unsuspected intersection between Hif-2α−mediated hypoxic signaling and hepatic insulin action through Irs2 induction, which can be co-opted by Vegf inhibitors to modulate glucose metabolism. These studies also indicate distinct roles in hepatic metabolism for Hif-1α, which promotes glycolysis7,8,9, and Hif-2α, which suppresses gluconeogenesis, and suggest new treatment approaches for type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Vegf inhibition improves hepatic insulin action.
Figure 2: Vegf inhibition induces hepatic vascular regression, liver hypoxia and HIF-2α stabilization to augment hepatic insulin signaling.
Figure 3: Activation of hepatic HIF-2α but not HIF-1α signaling is sufficient to improve liver insulin action.
Figure 4: HIF-2α regulates IRS2 through Srebp1c-dependent and Srebp1c-independent mechanisms.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Leavens, K.F. & Birnbaum, M.J. Insulin signaling to hepatic lipid metabolism in health and disease. Crit. Rev. Biochem. Mol. Biol. 46, 200–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Taniguchi, C.M., Emanuelli, B. & Kahn, C.R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Jungermann, K. Zonation of metabolism and gene expression in liver. Histochem. Cell Biol. 103, 81–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Kubota, N. et al. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab. 8, 49–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Dong, X. et al. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Invest. 116, 101–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Dong, X.C. et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 8, 65–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu, C.J. et al. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 α (HIF-1α) and HIF-2α in stem cells. Mol. Cell Biol. 26, 3514–3526 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rankin, E.B. et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 117, 1068–1077 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaelin, W.G. Jr. & Ratcliffe, P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Ferrara, N., Gerber, H.P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Alitalo, K. & Carmeliet, P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1, 219–227 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560–H576 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Billemont, B. et al. Blood glucose levels in patients with metastatic renal cell carcinoma treated with sunitinib. Br. J. Cancer 99, 1380–1382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hagberg, C.E. et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature 490, 426–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Kuo, C.J. et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc. Natl. Acad. Sci. USA 98, 4605–4610 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tam, B.Y. et al. VEGF modulates erythropoiesis through regulation of adult hepatic erythropoietin synthesis. Nat. Med. 12, 793–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Papadopoulos, N. et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 15, 171–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 99, 11393–11398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang, W.C. et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J. Biol. Chem. 281, 951–961 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. 59, 5209–5218 (1999).

    CAS  PubMed  Google Scholar 

  22. Fan, X. et al. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. FASEB J. 22, 3571–3580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mancuso, M.R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116, 2610–2621 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canettieri, G. et al. Dual role of the coactivator TORC2 in modulating hepatic glucose output and insulin signaling. Cell Metab. 2, 331–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ide, T. et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat. Cell Biol. 6, 351–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Shimomura, I. et al. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol. Cell 6, 77–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Lecomte, V. et al. A new role for sterol regulatory element binding protein 1 transcription factors in the regulation of muscle mass and muscle cell differentiation. Mol. Cell Biol. 30, 1182–1198 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Yeo, E.J., Cho, Y.S., Kim, M.S. & Park, J.W. Contribution of HIF-1α or HIF-2α to erythropoietin expression: in vivo evidence based on chromatin immunoprecipitation. Ann. Hematol. 87, 11–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Covello, K.L. et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mastrogiannaki, M. et al. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Invest. 119, 1159–1166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shah, Y.M., Matsubara, T., Ito, S., Yim, S.H. & Gonzalez, F.J. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 9, 152–164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rankin, E.B. et al. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol. Cell Biol. 29, 4527–4538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, X.L. et al. Ablation of ARNT/HIF1β in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones. Cell Metab. 9, 428–439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scully, M.S. et al. A novel EPO receptor agonist improves glucose tolerance via glucose uptake in skeletal muscle in a mouse model of diabetes. Exp. Diabetes Res. 2011, 910159 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Meng, R., Zhu, D., Bi, Y., Yang, D. & Wang, Y. Erythropoietin inhibits gluconeogenesis and inflammation in the liver and improves glucose intolerance in high-fat diet-fed mice. PLoS ONE 8, e53557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mardilovich, K. & Shaw, L.M. Hypoxia regulates insulin receptor substrate-2 expression to promote breast carcinoma cell survival and invasion. Cancer Res. 69, 8894–8901 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taniguchi, C.M. et al. Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nat. Med. doi:10.1038/nm.3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qu, A. et al. Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 54, 472–483 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Bracken, C.P. et al. Cell-specific regulation of hypoxia-inducible factor (HIF)-1α and HIF-2α stabilization and transactivation in a graded oxygen environment. J. Biol. Chem. 281, 22575–22585 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Gruber, M. et al. Acute postnatal ablation of Hif-2α results in anemia. Proc. Natl. Acad. Sci. USA 104, 2301–2306 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell–specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Jacobi, J. et al. Discordant effects of a soluble VEGF receptor on wound healing and angiogenesis. Gene Ther. 11, 302–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Ayala, J.E. et al. Hyperinsulinemic-euglycemic clamps in conscious, unrestrained mice. J. Vis. Exp. 57, 3188 (2011).

    Google Scholar 

  44. Steele, R., Wall, J.S., De Bodo, R.C. & Altszuler, N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am. J. Physiol. 187, 15–24 (1956).

    Article  CAS  PubMed  Google Scholar 

  45. Mulligan, K.X., Morris, R.T., Otero, Y.F., Wasserman, D.H. & McGuinness, O.P. Disassociation of muscle insulin signaling and insulin-stimulated glucose uptake during endotoxemia. PLoS ONE 7, e30160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. DePinho, L. Harshman, B. Tam, C. Chartier, D. Suchet and members of the Kuo laboratory for insightful comments and C. Her, J. Kovalski, K. Thabet and D. Nandamundi for technical assistance. We thank G. Fuh (Genentech) for B20.4.1.1 antibody, C. Chartier (Stanford) for the human HIF1A allele lacking the inhibitory ODD (HIF-1αΔODD) and M. Montminy (Salk) for Ad-IRS2. Fellowship support was from the Stanford Medical Scientist Training Program (K.W. and L.M.M.), NIGMS US National Institutes of Health (NIH) GM-07365 training grant (K.W.), Stanford Cardiovascular Institute T32 training grant 1K12HL087746 (S.M.P.), Molecular and Cellular Immunobiology Program training grant 5T32AI07290 (L.M.M.), NIH American Recovery and Reinvestment Act Supplement 1R01HL074267 (L.M.M.), Radiological Society of North America Research Resident grants 1018 and 1111 (C.M.T.), NIH DK084206 (J.P.A.) and Molecular Endocrinology Training Program grant T32DK007563 (K.X.M.). This work was supported by P30 DK026743 (Cell Biology Core Facility, University of California–San Francisco Liver Center) to J.J.M., NIH RO1DK043748, P60 DK020593 and U24DK059637 to O.P.M., NIH CA67166 and the Sydney Frank Foundation to A.J.G. and a Stanford Developmental Cancer Research Award and NIH R01HL074267, R01NS064517 and R01CA158528 to C.J.K.

Author information

Authors and Affiliations

Authors

Contributions

K.W., S.M.P., L.M.M., C.M.T., S.J.W., K.A., M.V., C.W.-M.C. and K.X.M. designed and performed experiments, D.K. and J.Y. provided technical assistance, L.C.M., E.L., G.M., F.R., J.J.M. and M.C.S. provided reagents, J.P.A., O.P.M., G.T., A.J.G. and C.J.K. designed experiments, K.W., S.M.P., L.M.M., C.M.T., O.P.M. and C.J.K. wrote the manuscript.

Corresponding author

Correspondence to Calvin J Kuo.

Ethics declarations

Competing interests

S.W., K.A., L.M. and G.T. are employees of Regeneron Pharmaceuticals, which manufactures aflibercept.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 5215 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wei, K., Piecewicz, S., McGinnis, L. et al. A liver Hif-2α–Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat Med 19, 1331–1337 (2013). https://doi.org/10.1038/nm.3295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing