Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Local proliferation dominates lesional macrophage accumulation in atherosclerosis

Subjects

Abstract

During the inflammatory response that drives atherogenesis, macrophages accumulate progressively in the expanding arterial wall1,2. The observation that circulating monocytes give rise to lesional macrophages3,4,5,6,7,8,9 has reinforced the concept that monocyte infiltration dictates macrophage buildup. Recent work has indicated, however, that macrophage accumulation does not depend on monocyte recruitment in some inflammatory contexts10. We therefore revisited the mechanism underlying macrophage accumulation in atherosclerosis. In murine atherosclerotic lesions, we found that macrophages turn over rapidly, after 4 weeks. Replenishment of macrophages in these experimental atheromata depends predominantly on local macrophage proliferation rather than monocyte influx. The microenvironment orchestrates macrophage proliferation through the involvement of scavenger receptor A (SR-A). Our study reveals macrophage proliferation as a key event in atherosclerosis and identifies macrophage self-renewal as a therapeutic target for cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrophages turn over rapidly in lesions.
Figure 2: Lesional macrophage accumulation occurs largely independently of monocyte recruitment.
Figure 3: In situ proliferation dominates macrophage accumulation in atherosclerosis.
Figure 4: The lesion microenvironment dictates macrophage proliferation.

Similar content being viewed by others

References

  1. Swirski, F.K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    Article  CAS  Google Scholar 

  2. Hansson, G.K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6, 508–519 (2006).

    Article  CAS  Google Scholar 

  3. Kim, C.J. et al. Polymerase chain reaction–based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tumor necrosis factor-α and interleukin-1β. Arterioscler. Thromb. Vasc. Biol. 20, 1976–1982 (2000).

    Article  CAS  Google Scholar 

  4. Lessner, S.M., Prado, H.L., Waller, E.K. & Galis, Z.S. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am. J. Pathol. 160, 2145–2155 (2002).

    Article  CAS  Google Scholar 

  5. Swirski, F.K. et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl. Acad. Sci. USA 103, 10340–10345 (2006).

    Article  CAS  Google Scholar 

  6. Swirski, F.K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  Google Scholar 

  7. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  Google Scholar 

  8. Combadière, C. et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6Chi and Ly6Clo monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117, 1649–1657 (2008).

    Article  Google Scholar 

  9. Saederup, N., Chan, L., Lira, S.A. & Charo, I.F. Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2−/− mice: evidence for independent chemokine functions in atherogenesis. Circulation 117, 1642–1648 (2008).

    Article  CAS  Google Scholar 

  10. Jenkins, S.J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  Google Scholar 

  11. Robbins, C.S. et al. Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesions. Circulation 125, 364–374 (2012).

    Article  Google Scholar 

  12. Swirski, F.K., Weissleder, R. & Pittet, M.J. Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 1424–1432 (2009).

    Article  CAS  Google Scholar 

  13. Potteaux, S. et al. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression. J. Clin. Invest. 121, 2025–2036 (2011).

    Article  CAS  Google Scholar 

  14. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  Google Scholar 

  15. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  Google Scholar 

  16. Psaltis, P.J. et al. Identification of a monocyte-predisposed hierarchy of hematopoietic progenitor cells in the adventitia of postnatal murine aorta. Circulation 125, 592–603 (2012).

    Article  Google Scholar 

  17. Bunster, E. & Meyer, R.K. An improved method of parabiosis. Anat. Rec. 57, 339–343 (1933).

    Article  Google Scholar 

  18. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol. 8, 578–583 (2007).

    Article  CAS  Google Scholar 

  19. Zhu, S.N., Chen, M., Jongstra-Bilen, J. & Cybulsky, M.I. GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. J. Exp. Med. 206, 2141–2149 (2009).

    Article  CAS  Google Scholar 

  20. Rosenfeld, M.E. & Ross, R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 10, 680–687 (1990).

    Article  CAS  Google Scholar 

  21. Gordon, D., Reidy, M.A., Benditt, E.P. & Schwartz, S.M. Cell proliferation in human coronary arteries. Proc. Natl. Acad. Sci. USA 87, 4600–4604 (1990).

    Article  CAS  Google Scholar 

  22. Rekhter, M.D. & Gordon, D. Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. Am. J. Pathol. 147, 668–677 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Katsuda, S., Coltrera, M.D., Ross, R. & Gown, A.M. Human atherosclerosis. IV. Immunocytochemical analysis of cell activation and proliferation in lesions of young adults. Am. J. Pathol. 142, 1787–1793 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lutgens, E. et al. Atherosclerosis in APOE*3-Leiden transgenic mice: from proliferative to atheromatous stage. Circulation 99, 276–283 (1999).

    Article  CAS  Google Scholar 

  25. Lutgens, E. et al. Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc. Res. 41, 473–479 (1999).

    Article  CAS  Google Scholar 

  26. Aikawa, M. et al. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 103, 276–283 (2001).

    Article  CAS  Google Scholar 

  27. Butcher, M.J., Herre, M., Ley, K. & Galkina, E. Flow cytometry analysis of immune cells within murine aortas. J. Vis. Exp. e2848 (2011).

  28. Gough, P.J. et al. Analysis of macrophage scavenger receptor (SR-A) expression in human aortic atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 19, 461–471 (1999).

    Article  CAS  Google Scholar 

  29. Teupser, D. et al. Scavenger receptor activity is increased in macrophages from rabbits with low atherosclerotic response: studies in normocholesterolemic high and low atherosclerotic response rabbits. Arterioscler. Thromb. Vasc. Biol. 19, 1299–1305 (1999).

    Article  CAS  Google Scholar 

  30. Hazen, S.L. Oxidized phospholipids as endogenous pattern recognition ligands in innate immunity. J. Biol. Chem. 283, 15527–15531 (2008).

    Article  CAS  Google Scholar 

  31. Sakai, M. et al. The scavenger receptor serves as a route for internalization of lysophosphatidylcholine in oxidized low density lipoprotein–induced macrophage proliferation. J. Biol. Chem. 271, 27346–27352 (1996).

    Article  CAS  Google Scholar 

  32. Seimon, T.A., Obstfeld, A., Moore, K.J., Golenbock, D.T. & Tabas, I. Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc. Natl. Acad. Sci. USA 103, 19794–19799 (2006).

    Article  CAS  Google Scholar 

  33. Heil, M. et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am. J. Physiol. Heart Circ. Physiol. 283, H2411–H2419 (2002).

    Article  CAS  Google Scholar 

  34. Boesten, L.S. et al. Macrophage retinoblastoma deficiency leads to enhanced atherosclerosis development in ApoE-deficient mice. FASEB J. 20, 953–955 (2006).

    Article  CAS  Google Scholar 

  35. Díez-Juan, A. et al. Selective inactivation of p27(Kip1) in hematopoietic progenitor cells increases neointimal macrophage proliferation and accelerates atherosclerosis. Blood 103, 158–161 (2004).

    Article  Google Scholar 

  36. Murphy, A.J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 121, 4138–4149 (2011).

    Article  CAS  Google Scholar 

  37. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  Google Scholar 

  38. Reed, J.A. et al. Distinct changes in pulmonary surfactant homeostasis in common beta-chain– and GM-CSF–deficient mice. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L1164–L1171 (2000).

    Article  CAS  Google Scholar 

  39. Van Rooijen, N. & Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994).

    Article  CAS  Google Scholar 

  40. Swirski, F.K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  Google Scholar 

  41. Galkina, E. et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203, 1273–1282 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Greene for secretarial assistance. We thank J. Whitsett at Cincinnati Children's Hospital Medical Center for providing Csf2rb−/− mice. This work was supported in part by US National Institutes of Health grants 1R01HL095612 (to F.K.S.) and HHSN 268201000044C, P01-A154904, U24-CA092782 and P50-CA086355 (to R.W.) and start-up funding provided by the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research and the Department of Laboratory Medicine and Pathobiology, University of Toronto (to C.S.R.). C.S.R. was supported by the Massachusetts General Hospital Executive Committee on Research (ECOR) Postdoctoral Award. G.F.W. and I.H. were supported by the German Research Foundation. I.T. was supported by the Max Kade Foundation. L.M.S.G. was supported by the Boehringer Ingelheim Funds.

Author information

Authors and Affiliations

Authors

Contributions

C.S.R. and I.H. conceived the project, designed and performed experiments, and analyzed and interpreted data. G.F.W., I.T., L.M.S.G., D.S., C.C.J.Z. and E.A.S. performed experiments and helped interpret the data. J.-L.F., R.G. and I.H. performed animal surgeries. Y.I. performed the immunofluorescence histology and immunohistochemistry. M.P. performed ImageStreamX Mark II studies. G.K.S., P.L., M.N., M.H. and R.W. provided materials, intellectual input and edited the manuscript. N.v.R. provided clodronate liposomes. H.Y.L. edited the manuscript. F.K.S. conceived the project, designed experiments and supervised the study. C.S.R. and F.K.S. wrote the manuscript.

Corresponding authors

Correspondence to Clinton S Robbins or Filip K Swirski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1936 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbins, C., Hilgendorf, I., Weber, G. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19, 1166–1172 (2013). https://doi.org/10.1038/nm.3258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing