Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion

Subjects

This article has been updated

Abstract

Hyperlipidemia is a risk factor for various cardiovascular and metabolic disorders. Overproduction of lipoproteins, a process that is dependent on microsomal triglyceride transfer protein (MTP), can contribute to hyperlipidemia. We show that microRNA-30c (miR-30c) interacts with the 3′ untranslated region of MTP mRNA and induces its degradation, leading to reductions in MTP activity and in apolipoprotein B (APOB) secretion. miR-30c also reduces lipid synthesis independently of MTP. Hepatic overexpression of miR-30c reduced hyperlipidemia in Western diet–fed mice by decreasing lipid synthesis and the secretion of triglyceride-rich ApoB-containing lipoproteins and decreased atherosclerosis in Apoe−/− mice. Furthermore, inhibition of hepatic miR-30c by anti–miR-30c increased hyperlipidemia and atherosclerosis. Therefore, miR-30c coordinately reduces lipid biosynthesis and lipoprotein secretion, thereby regulating hepatic and plasma lipid concentrations. Raising miR-30c levels might be useful in treating hyperlipidemias and associated disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of miR-30 family members on MTP activity and APOB secretion in Huh-7 cells.
Figure 2: Regulation of MTP mRNA by miR-30c and tissue expression pattern of miR-30c.
Figure 3: miR-30c regulates plasma and hepatic lipid concentrations.
Figure 4: miR-30c regulates hepatic lipid synthesis.
Figure 5: Effects of miR-30c in liver-specific MTP-deficient mice.
Figure 6: Effects of miR-30c on ApoB production and atherosclerosis.

Similar content being viewed by others

Change history

  • 20 September 2013

     In the version of this article initially published, the text incorrectly described the results of previously published studies of miR-30 family members. This sentence has now been corrected to read as follows: “miR-30a has a role in Xenopus kidney development26, miR-30e regulates apoptosis in breast tumor cells27, and miR-30a, miR-30c and miR-30d stimulate adipogenesis28,29.” The error has been corrected for the PDF and HTML versions of this article.

References

  1. Heidenreich, P.A. et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933–944 (2011).

    Article  PubMed  Google Scholar 

  2. Grundy, S.M. et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110, 227–239 (2004).

    Article  PubMed  Google Scholar 

  3. Hussain, M.M. & Pan, X. Clock genes, intestinal transport and plasma lipid homeostasis. Trends Endocrinol. Metab. 20, 177–185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hussain, M.M., Fatma, S., Pan, X. & Iqbal, J. Intestinal lipoprotein assembly. Curr. Opin. Lipidol. 16, 281–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Hussain, M.M. et al. Microsomal triglyceride transfer protein in plasma and cellular lipid metabolism. Curr. Opin. Lipidol. 19, 277–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Hussain, M.M., Shi, J. & Dreizen, P. Microsomal triglyceride transfer protein and its role in apolipoprotein B–lipoprotein assembly. J. Lipid Res. 44, 22–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hussain, M.M., Rava, P., Walsh, M., Rana, M. & Iqbal, J. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. (Lond) 9, 14 (2012).

    Article  CAS  Google Scholar 

  8. Berriot-Varoqueaux, N., Aggerbeck, L.P., Samson-Bouma, M. & Wetterau, J.R. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu. Rev. Nutr. 20, 663–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Burnett, J.R. & Watts, G.F. MTP inhibition as a treatment for dyslipidaemias: time to deliver or empty promises? Expert Opin. Ther. Targets 11, 181–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Hussain, M.M. & Bakillah, A. New approaches to target microsomal triglyceride transfer protein. Curr. Opin. Lipidol. 19, 572–578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cuchel, M. et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med. 356, 148–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Samaha, F.F., McKenney, J., Bloedon, L.T., Sasiela, W.J. & Rader, D.J. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med. 5, 497–505 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  Google Scholar 

  14. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 12, 846–860 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Millar, J.S., Cromley, D.A., McCoy, M.G., Rader, D.J. & Billheimer, J.T. Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339. J. Lipid Res. 46, 2023–2028 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Trajkovski, M. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474, 649–653 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Vickers, K.C. et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 57, 533–542 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Rayner, K.J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Najafi-Shoushtari, S.H. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Marquart, T.J., Allen, R.M., Ory, D.S. & Baldan, A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. USA 107, 12228–12232 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Zsigmond, E., Fuke, Y., Li, L., Kobayashi, K. & Chan, L. Resistance of chylomicron and VLDL remnants to post-heparin lipolysis in ApoE-deficient mice: the role of apoE in lipoprotein lipase-mediated lipolysis in vivo and in vitro. J. Lipid Res. 39, 1852–1861 (1998).

    CAS  PubMed  Google Scholar 

  23. Westerterp, M., de Haan, W., Berbee, J.F., Havekes, L.M. & Rensen, P.C. Endogenous apoC-I increases hyperlipidemia in apoE-knockout mice by stimulating VLDL production and inhibiting LPL. J. Lipid Res. 47, 1203–1211 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Agrawal, R., Tran, U. & Wessely, O. The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136, 3927–3936 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu, F. et al. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29, 4194–4204 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Zaragosi, L.E. et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol. 12, R64 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karbiener, M. et al. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 8, 850–860 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Chang, B.H.J. et al. Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein low density lipoprotein production in a viable conditional knockout mouse. J. Biol. Chem. 274, 6051–6055 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Khatun, I. et al. Phospholipid transfer activity of MTP promotes assembly of phospholipid-rich apoB-containing lipoproteins and reduces plasma as well as hepatic lipids in mice. Hepatology 55, 1356–1368 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iqbal, J., Anwar, K. & Hussain, M.M. Multiple, independently regulated pathways of cholesterol transport across the intestinal epithelial cells. J. Biol. Chem. 278, 31610–31620 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Ibrahimi, A. et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J. Biol. Chem. 274, 26761–26766 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, X., Zhou, M.Y., Huang, L.S., Wetterau, J. & Ginsberg, H.N. Demonstration of a physical interaction between microsomal triglyceride transfer protein and apolipoprotein B during the assembly of ApoB-containing lipoproteins. J. Biol. Chem. 271, 10277–10281 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Athar, H., Iqbal, J., Jiang, X.C. & Hussain, M.M. A simple, rapid, and sensitive fluorescence assay for microsomal triglyceride transfer protein. J. Lipid Res. 45, 764–772 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Rava, P., Athar, H., Johnson, C. & Hussain, M.M. Transfer of cholesteryl esters and phospholipids as well as net deposition by microsomal triglyceride transfer protein. J. Lipid Res. 46, 1779–1785 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Jamil, H. et al. An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from HepG2 cells. Proc. Natl. Acad. Sci. USA 93, 11991–11995 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Sellers, J.A., Hou, L., Athar, H., Hussain, M.M. & Shelness, G.S. A Drosophila microsomal triglyceride transfer protein homolog promotes the assembly and secretion of human apolipoprotein B: implications for human and insect lipid transport and metabolism. J. Biol. Chem. 278, 20367–20373 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Dai, K., Khatun, I. & Hussain, M.M. NR2F1 and IRE1-β suppress microsomal triglyceride transfer protein expression and lipoprotein assembly in undifferentiated intestinal epithelial cells. Arterioscler. Thromb. Vasc. Biol. 30, 568–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Folch, J., Lees, M. & Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  Google Scholar 

  41. Stansbie, D., Brownsey, R.W., Crettaz, M. & Denton, R.M. Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetyl-coenzyme A carboxylase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats. Biochem. J. 160, 413–416 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iritani, N., Yamashita, S. & Numa, S. Dietary control of triglyceride and phospholipid synthesis in rat liver slices. J. Biochem. 80, 217–222 (1976).

    Article  CAS  PubMed  Google Scholar 

  43. Iqbal, J. et al. Increased intestinal lipid absorption caused by Ire1β deficiency contributes to hyperlipidemia and atherosclerosis in apolipoprotein E–deficient mice. Circ. Res. 110, 1575–1584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grants DK-46900 and HL-95924 to M.M.H. Mttpflox/flox mice were from L. Chan (Baylor University).

Author information

Authors and Affiliations

Authors

Contributions

J.S. performed all the experiments, analyzed data and wrote a draft of the paper. J.I. taught J.S. different techniques, participated in atherosclerosis experiments and edited figures. J.Q. performed sectioning and staining of aortas. C.F.-H. discussed experiments and edited the manuscript. M.M.H. conceived the ideas, designed and discussed experiments, supervised progress and extensively edited and communicated regarding the manuscript.

Corresponding author

Correspondence to M Mahmood Hussain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–9 (PDF 1468 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soh, J., Iqbal, J., Queiroz, J. et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med 19, 892–900 (2013). https://doi.org/10.1038/nm.3200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing