Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis

Subjects

Abstract

Platelets have a key role in atherogenesis and its complications. Both hypercholesterolemia and increased platelet production promote atherothrombosis; however, a potential link between altered cholesterol homeostasis and platelet production has not been explored. Here we show that transplantation of bone marrow deficient in ABCG4, a transporter of unknown function, into Ldlr−/− mice resulted in thrombocytosis, accelerated thrombosis and atherosclerosis. Although not detected in atherosclerotic lesions, Abcg4 was highly expressed in bone marrow megakaryocyte progenitors (MkPs). Abcg4−/− MkPs had defective cholesterol efflux to high-density lipoprotein (HDL), increased cell surface expression of the thrombopoietin (TPO) receptor (c-MPL) and enhanced proliferation. These consequences of ABCG4 deficiency seemed to reflect disruption of negative feedback regulation of c-MPL signaling by the E3 ligase c-CBL and the cholesterol-sensing LYN kinase. HDL infusion reduced platelet counts in Ldlr−/− mice and in a mouse model of myeloproliferative neoplasm in an ABCG4-dependent fashion. HDL infusions may offer a new approach to reducing atherothrombotic events associated with increased platelet production.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: ABCG4 deficiency in bone marrow increases platelet count and accelerates atherosclerosis and thrombosis.
Figure 2: Abcg4 is highly expressed in MkPs and regulates megakaryopoiesis and c-MPL expression.
Figure 3: ABCG4 deficiency decreases cholesterol efflux and increases membrane cholesterol content and proliferation of MkPs.
Figure 4: Increased MkP c-MPL expression and proliferation in ABCG4 deficiency involves altered activity of c-CBL and LYN.
Figure 5: rHDL suppresses platelet production in an ABCG4-dependent fashion in vivo.

References

  1. Labarthe, D.R. & Dunbar, S.B. Global cardiovascular health promotion and disease prevention: 2011 and beyond. Circulation 125, 2667–2676 (2012).

    Article  PubMed  Google Scholar 

  2. Libby, P., Ridker, P.M. & Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Koenen, R.R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 15, 97–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Coller, B.S. Historical perspective and future directions in platelet research. J. Thromb. Haemost. 9 (suppl. 1), 374–395 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martin, J.F., Kristensen, S.D., Mathur, A., Grove, E.L. & Choudry, F.A. The causal role of megakaryocyte-platelet hyperactivity in acute coronary syndromes. Nat. Rev. Cardiol. 9, 658–670 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Trip, M.D., Cats, V.M., van Capelle, F.J. & Vreeken, J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med. 322, 1549–1554 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Hasselbalch, H.C. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 3219–3225 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Tefferi, A. & Vainchenker, W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J. Clin. Oncol. 29, 573–582 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Steinberg, D. The statins in preventive cardiology. N. Engl. J. Med. 359, 1426–1427 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Tall, A.R., Yvan-Charvet, L., Terasaka, N., Pagler, T. & Wang, N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 7, 365–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Pathansali, R., Smith, N. & Bath, P. Altered megakaryocyte-platelet haemostatic axis in hypercholesterolaemia. Platelets 12, 292–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, N., Lan, D., Chen, W., Matsuura, F. & Tall, A.R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl. Acad. Sci. USA 101, 9774–9779 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, N., Ranalletta, M., Matsuura, F., Peng, F. & Tall, A.R. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arterioscler. Thromb. Vasc. Biol. 26, 1310–1316 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Annilo, T. et al. Human and mouse orthologs of a new ATP-binding cassette gene, ABCG4. Cytogenet. Cell Genet. 94, 196–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Bojanic, D.D. et al. Differential expression and function of ABCG1 and ABCG4 during development and aging. J. Lipid Res. 51, 169–181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ranalletta, M. et al. Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with Abcg1−/− bone marrow. Arterioscler. Thromb. Vasc. Biol. 26, 2308–2315 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Meurs, I. et al. The effect of ABCG1 deficiency on atherosclerotic lesion development in LDL receptor knockout mice depends on the stage of atherogenesis. Atherosclerosis 221, 41–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mazzone, A. et al. Increased expression of neutrophil and monocyte adhesion molecules in unstable coronary artery disease. Circulation 88, 358–363 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Mause, S.F., von Hundelshausen, P., Zernecke, A., Koenen, R.R. & Weber, C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler. Thromb. Vasc. Biol. 25, 1512–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Guthikonda, S. et al. Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease. J. Am. Coll. Cardiol. 52, 743–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Lakkis, N. et al. Reticulated platelets in acute coronary syndrome: a marker of platelet activity. J. Am. Coll. Cardiol. 44, 2091–2093 (2004).

    Article  PubMed  Google Scholar 

  24. Stohlawetz, P. et al. Measurement of the levels of reticulated platelets after plateletpheresis to monitor activity of thrombopoiesis. Transfusion 38, 454–458 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Nofer, J.R. & van Eck, M. HDL scavenger receptor class B type I and platelet function. Curr. Opin. Lipidol. 22, 277–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Villmow, T., Kemkes-Matthes, B. & Matzdorff, A.C. Markers of platelet activation and platelet-leukocyte interaction in patients with myeloproliferative syndromes. Thromb. Res. 108, 139–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Pikman, Y. et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 3, e270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frontelo, P. et al. Novel role for EKLF in megakaryocyte lineage commitment. Blood 110, 3871–3880 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hitchcock, I.S., Chen, M.M., King, J.R. & Kaushansky, K. YRRL motifs in the cytoplasmic domain of the thrombopoietin receptor regulate receptor internalization and degradation. Blood 112, 2222–2231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tiedt, R. et al. Pronounced thrombocytosis in transgenic mice expressing reduced levels of Mpl in platelets and terminally differentiated megakaryocytes. Blood 113, 1768–1777 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Kelemen, E., Lehoczky, D., Jakab, K., Batai, A. & Vargha, P. Responses to single-dose thrombopoietin decrease with higher platelet counts in mice. Acta Haematol. 101, 41–45 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Brown, M.S. & Goldstein, J.L. Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. J. Lipid Res. 50 (suppl.), S15–S27 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Saur, S.J., Sangkhae, V., Geddis, A.E., Kaushansky, K. & Hitchcock, I.S. Ubiquitination and degradation of the thrombopoietin receptor c-Mpl. Blood 115, 1254–1263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nadeau, S. et al. Oncogenic signaling by leukemia-associated mutant Cbl proteins. Biochem. Anal. Biochem. S6 (2012).

  36. Hunter, S., Burton, E.A., Wu, S.C. & Anderson, S.M. Fyn associates with Cbl and phosphorylates tyrosine 731 in Cbl, a binding site for phosphatidylinositol 3-kinase. J. Biol. Chem. 274, 2097–2106 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Blake, R.A. et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell Biol. 20, 9018–9027 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lannutti, B.J., Shim, M.H., Blake, N., Reems, J.A. & Drachman, J.G. Identification and activation of Src family kinases in primary megakaryocytes. Exp. Hematol. 31, 1268–1274 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Oneyama, C. et al. Transforming potential of Src family kinases is limited by the cholesterol-enriched membrane microdomain. Mol. Cell Biol. 29, 6462–6472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lannutti, B.J., Minear, J., Blake, N. & Drachman, J.G. Increased megakaryocytopoiesis in Lyn-deficient mice. Oncogene 25, 3316–3324 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Ingley, E. et al. Lyn deficiency reduces GATA-1, EKLF and STAT5, and induces extramedullary stress erythropoiesis. Oncogene 24, 336–343 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Saporito, M.S., Ochman, A.R., Lipinski, C.A., Handler, J.A. & Reaume, A.G. MLR-1023 is a potent and selective allosteric activator of Lyn kinase in vitro that improves glucose tolerance in vivo. J. Pharmacol. Exp. Ther. 342, 15–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Tardif, J.C. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. J. Am. Med. Assoc. 297, 1675–1682 (2007).

    Article  Google Scholar 

  44. Koppikar, P. et al. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood 115, 2919–2927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marty, C. et al. Ligand-independent thrombopoietin mutant receptor requires cell surface localization for endogenous activity. J. Biol. Chem. 284, 11781–11791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shaw, J.A. et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ. Res. 103, 1084–1091 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Brown, M.S. & Goldstein, J.L. Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol. J. Biol. Chem. 249, 7306–7314 (1974).

    CAS  PubMed  Google Scholar 

  48. Brown, M.S. & Goldstein, J.L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res. 21, 505–517 (1980).

    CAS  PubMed  Google Scholar 

  49. Murphy, A.J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 121, 4138–4149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bensinger, S.J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Armstrong, A.J., Gebre, A.K., Parks, J.S. & Hedrick, C.C. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. J. Immunol. 184, 173–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Kovárová, M. et al. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcɛ receptor I aggregation. Mol. Cell Biol. 21, 8318–8328 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gieger, C. et al. New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201–208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barter, P.J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Boden, W.E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Rader, D.J. & Tall, A.R. The not-so-simple HDL story: is it time to revise the HDL cholesterol hypothesis? Nat. Med. 18, 1344–1346 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Verstovsek, S. et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N. Engl. J. Med. 363, 1117–1127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wolanskyj, A.P., Schwager, S.M., McClure, R.F., Larson, D.R. & Tefferi, A. Essential thrombocythemia beyond the first decade: life expectancy, long-term complication rates, and prognostic factors. Mayo Clin. Proc. 81, 159–166 (2006).

    Article  PubMed  Google Scholar 

  59. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tall, A.R., Yvan-Charvet, L., Westerterp, M. & Murphy, A.J. Cholesterol efflux: a novel regulator of myelopoiesis and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 32, 2547–2552 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Chan, V.W., Meng, F., Soriano, P., DeFranco, A.L. & Lowell, C.A. Characterization of the B lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation. Immunity 7, 69–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Tong, W., Ibarra, Y.M. & Lodish, H.F. Signals emanating from the membrane proximal region of the thrombopoietin receptor (mpl) support hematopoietic stem cell self-renewal. Exp. Hematol. 35, 1447–1455 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bersenev, A., Wu, C., Balcerek, J. & Tong, W. Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J. Clin. Invest. 118, 2832–2844 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.J.M. was supported by a postdoctoral fellowship from the American Heart Association (12POST11890019). This study was supported by US National Institutes of Health grant HL107653 (A.R.T.). We thank A.L. DeFranco and C.A. Lowell of the University of California, San Francisco for providing Lyn−/− bone marrow cells and W. Tong of the University of Pennsylvania for providing the antibody to c-MPL for flow cytometry analysis.

Author information

Authors and Affiliations

Authors

Contributions

A.J.M., N. Bijl and N.W. conceived the study, designed, performed and analyzed the experiments and wrote the manuscript. L.Y.-C., C.B.W., N. Bhagwat, A.R., Y.W. and J.A.S. designed, performed and analyzed experiments. R.L.L. and H.N. provided intellectual input and assisted with the preparation of the manuscript. A.R.T. conceived the study and contributed to writing the manuscript.

Corresponding author

Correspondence to Nan Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Information (PDF 6732 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murphy, A., Bijl, N., Yvan-Charvet, L. et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat Med 19, 586–594 (2013). https://doi.org/10.1038/nm.3150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3150

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing